
Technical Note P14-04A

Page 1 of 8 Controlling a Hyperdeck

Technical Note: Controlling a Hyperdeck

Author: John R. Naylor
Date: July 25, 2014

Copyright © 2014, Ross Video Ltd. All Rights Reserved

1 Introduction
At NAB 2014 we demo’d a Blackmagic Designs’ Hyperdeck being controlled from a DashBoard Custom

Panel. An updated version of it accompanies this document which describes how it was done, and

highlights some of the implementation specifics.

Gaining control over devices via Ethernet requires the programmer to understand the device’s control

protocol, and handle its responses and exceptions. Ross Video cannot provide end user support for

integrations of this type, but will provide appropriate assistance to programmers engaged in creating

them via tutorial videos, and publications like this one.

The integration documented here shows how DashBoard can load a list of clips from the deck, select, cue

and play them, and adjust the play speed. It also allows the user to set up recording sources, and to

crash record clips. Extending the panel to, say control multiple decks that can record as a gang would be

useful. If you do this, please consider sharing it with the growing DashBoard Custom Panels community

2 Technical Details
The system diagram for this integration is straightforward.

Figure 1 - System Diagram

The only piece of information needed is the deck’s IP address which can be read or set using the deck’s

setup menu.

2.1 You will need…

Item Supplier Notes

DashBoard 6.2 Beta Ross Video, Ltd This should work in the 6.1 released version of

DashBoard too.

A Hyperdeck Blackmagic Designs I’ve used both the Studio and Studio Pro
successfully.

An SSD drive Various Recording media

DashBoard App. HyperdeckEthernet

http://www.rossvideo.com/control-systems/dashboard/products/dashboard-beta.html

Technical Note P14-04A

Page 2 of 8 Controlling a Hyperdeck

Please follow the installation instructions for the packages listed above carefully.

2.2 You should know…

Item Resources

Basic PanelBuilder Scripting PanelBuilder 105 at DashBoard-U

Using Functions in PanelBuilder PanelBuilder 203

Using Network Listeners in

PanelBuilder

PanelBuilder 204

JavaScript W3 Schools

Hyperdeck command protocol Blackmagic Designs Hyperdeck Manual, pages 57-71

Note that the integration documented has worked on Windows 7.1 Pro 64 bit. It should work on other

supported platforms but I’ve not done this and, regrettably, cannot offer support should you encounter

difficulties on Mac OS X or Linux.

2.3 Using the Custom Panel

First ensure that the deck will accept remote control by pressing its <REM> button so that it is

illuminated.

Now launch the demo Custom Panel.

Select the <Set Up> tab, enter the deck’s IP address, and hit the <Set> button.

Figure 2 - Set Up

 If you want to avoid this step because you’re always using the same deck at the same IP address, you can enter the IP address in

the Custom Panel’s hosts table. Do this by entering edit mode. Double click the background to bring up the editing GUI, and use the

right hand tree navigator to select the hosts lookup where you’ll be able to overwrite the Panel’s default IP address.

http://www.rossvideo.com/control-systems/dashboard/dashboard-u/index.html
http://www.w3schools.com/js/default.asp

Technical Note P14-04A

Page 3 of 8 Controlling a Hyperdeck

Figure 3 – Production Panel

To play back previously recorded clips, press <Refresh Clip List>.

This should load the clip names in to the dropdown above this button, and the Comms button should

blink momentarily. If this doesn’t happen, there is some sort of problem. Open the debug view and try

again to see whether any problems are reported there.

You can now select a clip, cue it using the <Cue Clip> button, and use the transport controls in this part

of the panel to play & stop your clip and adjust its playback speed.

The recording controls provide you with the ability to set up the audio and video sources to record, and a

name for the clip. Pressing the <Record Clip> button will start the recording.

2.4 A look at the code

The TCP listener is the key to this integration. This panel also demonstrates how to use global Javascript

variables within a Custom Panel that is also a useful technique.

Figure 4 shows how to set up the Listener correctly for interoperation with the deck. The host information

is loaded from one of the Custom Panel’s internal parameters that is initialized from a default value when

the panel is loaded. The hosts’ table is illustrated in Figure 5. Edit this to change the default value of the

deck’s IP address.

Note that Hyperdeck communicates on port 9993 which is also stored in the hosts table.

Technical Note P14-04A

Page 4 of 8 Controlling a Hyperdeck

Figure 4 - Listener Settings

Figure 5 - Lookup: hosts

 The Listener uses a “custom” setting for its connection in order to make it easy for the user to set up. The IP address is stored in a

string parameter (with OID 0x9) that is accessed by this XML substitution to set the Listener’s connecthost attribute:

connecthost=%value[0x9][0]%. When the IP address is changed, the onchange method for the OID reloads the Listener’s

container (the tab it’s on) which, in turn, reinitializes the IP address to which it’s listening. You need to access the Listener’s

<Source> tab and edit the XML directly to set up a Listener that behaves in this manner.

Before looking at the Listener’s code, it’s instructional to describe how the connection with the deck is

active.

All but one of the commands set up a TCP connection to the deck, issue a command string, and then tear

the connection down again. DashBoard provides a convenient way of doing this using a feature called

“RossTalk” which is fully supported in the GUI as shown in Figure 6.

Technical Note P14-04A

Page 5 of 8 Controlling a Hyperdeck

Figure 6 - RossTalk Editor

2.4.1 For Simple, One way commands, use RossTalk

To add a RossTalk command to a button, simply add a task, and then select RossTalk from the options

on the left (shown highlighted blue). It’s then a simple matter of selecting the recipient host from the

drop down, and setting the command type to “custom”. The command itself is then entered on the

command line. In the example above, the command is simply “stop”.

It is possible to define a callback function to handle errors and exceptions, which hasn’t been done in this

example.

It’s also possible to use RossTalk programmatically from a script. The following example is similar to that

generated by the UI in Figure 6. I’ve just replaced function calls that recover the IP address and port

number with literal values for clarity.

rosstalk.sendMessage(‘192.168.1.84’, 9993, ' stop');

2.4.2 Use ogScript in the Listener for Transactions with the deck

The one application level transaction in this panel is for the retrieval of the clip list. The code that initiates

the request is shown in Box 1, below, with the callback function in Box 2.

Recall that the Listener’s ID is “commandSender” as shown in Figure 4. It is accessed programmatically

by the ogScript command getListenerById from where we can call its start and stop methods.

Technical Note P14-04A

Page 6 of 8 Controlling a Hyperdeck

The three calls to putObject show how global Javascript variables can be stored and accessed within a

Custom Panel. The purpose of storing the information in this manner is to allow it to be used in part of

the panel that isn’t in the local scope: the Listener code.

 //Put the connection into a known state

 ogscript.getListenerById('commandSender').stop();

 //Mark ourselves as 'busy' so nothing else gets sent

 ogscript.putObject('busy', true);

 //Store this so the listener knows what to send

 ogscript.putObject('sendCommand', 'clips get');

 //Add a callback for the listener to call when we are done

 ogscript.putObject('callback', callbackFunction);

 //start the listener so it can send the command and read the result

 ogscript.getListenerById('commandSender').start();

Box 1 - Initializing the "Get Clips" Transaction

Technical Note P14-04A

Page 7 of 8 Controlling a Hyperdeck

The callback function will be invoked when the Listener has obtained a well formed response from the

deck. You can see that its main purpose is to do some housekeeping, stop the listener, and update the

choice constraint for the clip selector so that the user can select from an up-do-date list of clips.

2.4.3 The Listener Code

For a complete listing of the Listener code, please refer to the accompanying Custom Panel. In simple

terms, there are three types of event that the Listener can act upon: connection, message and

disconnection.

The code uses the isConnectEvent, isMessageEvent, and isDisconnectEvent methods to determine which

has occurred so that it can take appropriate action.

2.4.4 isConnectEvent

This event occurs at the start of a TCP connection. We started one of these when the Listener’s start

method was invoked in Box 1, above.

var callbackFunction = function(result) {

 //Reset our 'busy' state

 ogscript.putObject('busy', false);

 //Stop the command sender

 ogscript.getListenerById('commandSender').stop();

 //If we didn't get a result, we can't do much more

 if (result == null || result == undefined) {

 ogscript.debug('no result');

 return;

 }

 //If we did, let's update our clip list

 params.replaceConstraint(0x2, params.createIntChoiceConstraint(result));

};

Box 2 - The Callback Function

var commandToSend = ogscript.getObject('sendCommand');

ogscript.putObject('sendCommand', null);

this.writeString(commandToSend + '\n', false);

Box 3 - Send command on isConnectEvent

Technical Note P14-04A

Page 8 of 8 Controlling a Hyperdeck

So, knowing that we’d previously stored the command to send in a global variable, the code here

recovers it, and sends it to the deck. Note the use of this to use the TCP connection, and its writeString

method. The code shown above has been simplified for clarity.

2.4.5 isMessageEvent

The key Listener method used here is event.getBytesAsString().trim() which reads the message from

the deck into a string which the rest of the code is involved in parsing. The trim method just removes

leading and trailing whitespace from the message received.

A detailed account of the message structure and how to parse it is outside the scope of this tech note.

Please look at the accompanying source code directly to understand the detail, and refer to the resources

in Further Reading for the Hyperdeck protocol.

2.4.6 isDisconnectEvent

We don’t do much here except to clear a “busy” flag.

3 Further Reading
http://www.blackmagicdesign.com/products/hyperdeckstudio

http://software.blackmagicdesign.com/HyperDeck/docs/HyperDeck_2014-06.pdf

4 Acknowledgements
Thanks to Ross Video’s own Chris Kelly for putting together the initial panel, and to Matt Jefferson, Black

Magic Design’s Worldwide Director of Developer & Partnerships for the loan of a Hyperdeck.

5 Notices
‘Blackmagic Design’ is a trademark registered in the USA and other countries.

‘DashBoard’ and ‘Panel Builder’ are trademarks owned by Ross Video Ltd.

http://www.blackmagicdesign.com/products/hyperdeckstudio
http://software.blackmagicdesign.com/HyperDeck/docs/HyperDeck_2014-06.pdf

