DashBoard

DashBoard

FACILITY CONTROL SYSTEM

CustomPanel Development Guide

OGLML and ogScript
Version 9.16

Ross Video®

Thank You for Choosing Ross

You've made a great choice. We expect you will be very happy with your purchase of Ross Technology.
Our mission is to:

1. Provide a Superior Customer Experience

o offer the best product quality and support
2. Make Cool Practical Technology

e develop great products that customers love

Ross has become well known for the Ross Video Code of Ethics. It guides our interactions and empowers
our employees. | hope you enjoy reading it below.

If anything at all with your Ross experience does not live up to your expectations be sure to reach out to
us at solutions@rossvideo.com.

—D.‘Q 2\85

David Ross CEO, Ross Video
dross@rossvideo.com

Ross Video Code of Ethics

Any company is the sum total of the people that make things happen. At Ross, our employees are a
special group. Our employees truly care about doing a great job and delivering a high quality customer
experience every day. This code of ethics hangs on the wall of all Ross Video locations to guide our
behavior:

1. We will always act in our customers’ best interest.

We will do our best to understand our customers’ requirements.
We will not ship crap.

We will be great to work with.

o kv

We will do something extra for our customers, as an apology, when something big goes wrong and
it's our fault.

We will keep our promises.
We will treat the competition with respect.
We will cooperate with and help other friendly companies.

© ® N>

We will go above and beyond in times of crisis. If there's no one to authorize the required action in
times of company or customer crisis - do what you know in your heart is right. (You may rent
helicopters if necessary.)

ii « Thank You for Choosing Ross DashBoard CustomPanel Development Guide

mailto:dross@rossvideo.com

DashBoard CustomPanel Development Guide

e Ross Part Number: 8351DR-007-9.16
e Release Date: December 17, 2025

Copyright

© 2026 Ross Video Limited. Ross®, openGear®, and any related marks are trademarks or registered trademarks of Ross
Video Ltd. All other trademarks are the property of their respective companies. PATENTS ISSUED and PENDING. All
rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of Ross Video.
While every precaution has been taken in the preparation of this document, Ross Video assumes no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained
herein.

Patents

Patent numbers US 7,034,886; US 7,508,455; US 7,602,446; US 7,802,802 B2; US 7,834,886; US 7,914,332; US
8,307,284; US 8,407,374 B2; US 8,499,019 B2; US 8,519,949 B2; US 8,743,292 B2; GB 2,419,119 B; GB 2,447,380 B;
and other patents pending.

DashBoard CustomPanel Development Guide Thank You for Choosing Ross e iii

Company Address

Ross Video Limited Ross Video Incorporated
8 John Street P.O. Box 880

Iroquois, Ontario, KOE 1K0 Ogdensburg, New York

Canada USA 13669-0880

General Business Office: (+1) 613 ¢ 652 « 4886
Fax: (+1) 613 « 652 « 4425

Technical Support: (+1) 613 « 652 « 4886
After Hours Emergency: (+1) 613 ¢ 349 « 0006

E-mail (Technical Support): techsupport@rossvideo.com

E-mail (General Information): solutions@rossvideo.com

Website: http://www.rossvideo.com

iv e Thank You for Choosing Ross DashBoard CustomPanel Development Guide

mailto:techsupport@rossvideo.com
mailto:solutions@rossvideo.com
http://www.rossvideo.com/

Contents

Introduction 11
ADOUL thiS GUIAEvvieiiieiie ettt ettt e e ta e e tae e tbeesaeestbeesae e sbeesaeesseesneenes 11
CUSLOMPANE] OVEIVIEW ...evviviiiieiieieeie et et ettt eteete e v e eebeeesesteesteesseesseesseesneessesssesseesseenseans 11

PanCIBUILACTcveiiiiiieiiicicctecece ettt ettt aeebe e aesaeesaeereenneens 11
CustomPanel Frameworkc.ocoieiiiiiiiiiiciecie ettt e 12
GEtHING STATLEA. ... eevietieiieieete ettt ettt et e st et e st e e beesbeesbesssesseesseesseenseessesssesssesseeseensenns 14
Building a CustomPanel AppliCationcceevieviieciiecierieiieneeseeie e eeeseeesseeneens 14

DashBoard Data Model 16
IN THIS SECHOM.......eoiviiiietietiete ettt ettt et ete et e et e te e re et e esbeeesesesesseesteesseenseensesrsesssesseeseenseans 16
Device Data MOAEL........c.ooouiiiiiiiciieieceeceeeete ettt ettt et e e ae e ae e aeesreeeaeenre e 16

Data Object HICrarchy........c.coooueoiiiiiieiieeiee et 16
DEVICE / CAIA ...veonvieeiieiieeiieeeecee ettt ettt ettt beste e s beesbeeseesbeesaesseesseesseenseens 17
PaTAIMETETS ...eeuvieeiiieeiee ettt et et e et e et e e baeeteesbaeeteesbbeenaneenes 18
COMSILAINES ...veuvieevieeiiiieeieeteesteeteeseeeteeteesteesseeseasseeseesseesseesseesseessesssesssesseesseessenssesses 20
Parameter Structure ODJECTSccvveriieriieieiieriiereee ettt e e enee e 21
Parameter References.cveiiiiiieiiiiiee et 22
IMLEIUS ...ttt ettt et ettt ettt bt e bt bt e ae e e bt e e bt e e bt e e bt e e baeenaeeeane 22
Customizing Menus Using Display HiIntscooccovieiieiiiiieieeseeeeee e 24
UNIVETSAl HINS.....eiiieiiiiiieiie ettt ettt et e e taeeseeetaeesaeesaeesneenes 24
Separators, Titles and Layout Hintscccoeoieiiniinienieeee e 24
ATray Layout HINES ...ccooiiiiiiiieiiiec et 26
INT16/INT32 Parameters with Choice CONStraintscceeeveeeveeeeseereenneenneenenes 28
Hints for Numeric Parameters with Other Constraints...........cocceeeeveerveeneeenveennennns 34
Hints for String Parameterscccveeviieiiiierienieieere et seesie e eveeeeeseesaeesseesseens 44
Hints for STRUGCT TYPES .ovveivieiieiieiieieitesttesieeteereevesteeseesseeseassessaesseessaesseesseens 48
DAtA T YPCS et iutieeniieeiie ettt et ettt ettt ettt et e et e et e et b e e ate e baeebte e bbeetae e bae e ate e bbeentaeenbaeenne et 50
ENIANNESSoevieiieiieieeieceee ettt et e e sra e te e teese e s e e naeeneesseeseenseens 50
NUMDBET ENCOINGviiiieiiieieciieiteeee ettt e e s nnees 50
StrNG ENCOAINE.....eiiiiiiieieieiiee ettt saeas 51
EXternal Data ODJECLSceveruieriieiieieeiie ettt ettt et eeee st ettt e eseess e sbe e teeeeeneesneesseenneeneeens 51
CONSLTAINL ..euvieeitieeieeeieeetee et et e et e et e et e e ebeeeabeesbeessseeesseessseessseesssaessseessseesssaensses 51
Data File . ..oiviiiiiiiicieciec ettt e a e e b e eaeesre e reenre e 51
TIMAEE. ..ottt ettt b e bt et et eae 51
OGLML Descriptor or INdeX XML........ccccieiiiieriiieiiieeiiecieeeiee e siee e seree e e 52
FALE ettt ettt et sb et e e be e te e beerbeeraeeseesteeteenseens 52
OGLML DOCUMENES......ceetieiiieeiieiiieeteesteeeteesteesteesbeesnteesbeessseesseessseesseessseessseessseesseessses 52
COMEAINIETS ..vveuvieerieeieeiieeeteetee et eteebeesbeeteesteesseeseesseeseesseesseesseenseessesssesssesseessesssenssenses 52
COMLEXLES .uveerntieeitie et eitee ettt st e et e st e st e s bt e st e e st e e sateesabeesateesabeesateesabeesateesabeenates 52
OGLML DOCUMENt SIIUCLUTEeeeiviiiiiieniiieiiieeiee ettt sttt sree st svee st e s 52
OGLML URLS ...ttt ettt ettt sttt aen 53
OGLML Descriptor FOIMALcccuieiiiieiieiieie e 53
CUSLOIM WIAZEES ..cnveeneieiiieiieeee ettt ettt ettt ettt et e et e e et e s bt e bt e nteenteemeeeneeeneesseenseenseens 54
Creating WAd@ELS.ceeiieieeeieiiee ettt ettt e st sbe b e ee e eee 55
WiIAEEt SAMPIES ...ttt ettt eee et et e e e neas 57
DeSCTIPLOT LOCAION.c.uvieeieeiiiesiie et eiie et ete ettt e e stbe e e etaeesereesbaeenseeesseensnaenes 63
Parameter MAapPINgcooueeierierieieee ettt ettt ettt 64
Using DashBoard Prebuilt Custom Widgetsc..cceveerieriieriieiinieniesieie e 64
Custom APIs Within CUuStomMPAanelS............ccevvuiriirienieriieiieieeieseese e sre s s e 75
Lexical Order and Loading Ordercccocvevierieniieciieieeieceeseeie e ees 75
Enabling Reuse by Keeping APIs in Separate Files.......c..ccceceevieninininnicniceiennenne. 81
MANAGING SCOPEC...vveuvieurierreerieerierteesteesteetesstesstesseesseanseessessaesseesseenseansesssesssesseesseessenns 82

DashBoard CustomPanel Development Guide ogScript Reference o 5

OGLML Reference 84

IN THES SECTIOM. ...ttt ettt ettt e et bt bt e st et en e b e e beeaeseeebeeneensensaneas 84
GENEIal AIIDULES ...couviiiiiiiiieiieiiece ettt sb ettt ettt saeesbeenae et ens 84
Using OGP Devices that Support Subscriptions Protocol...........cccccevvevienieeieennnnne. 87
SUDSCIIPLIONS. 1..veevvieitieireeeteettesteesteeseeeteeteesteesseeseesseeseesseesseesseesseessenssesssesseessenssesssenses 87
EXAIMPIES ..oouvieiieiieiecie ettt ettt ettt et sree st e et e b e esbeetbeete e raebeenseenaenees 90
OPENGEAT SEY1E HINTS....cuvieiieiieeiieciieiieeee ettt ettt b e s eesneesneesseenseenseens 91
Style Hint REfEreNnCecceevuieiiiiiiieeieieit ettt nnees 91
34 (N1 (ST = 11 SRR 92
L0703 501010731S3 1 LA @) Lo oSSR 93
Predefined ColOrS.......oouiiiiieeeeee ettt 94
BOrder SEYLES ...ttt ens 96
TEXU/FONE SEYLES ..ottt ettt ettt et e e e 96
LCOM SEYLES ...ttt ettt ettt ettt e e et et ebe et ene et neeeen 97
TOOIIP SEYLE. ..ttt ettt sttt eae et e e e 98
INSEE StYLC..cuuiiiieiieie ettt ettt b et ta e ra e beenbeenaeeees 98
Background StYIESoecvieieiieiieieeit ettt re b e 98
Button Style MOAIfIErS......cccveiieriieieeiicie ettt et se e saeeaeeaesseesaeesseesseens 99
Layout/Container TaZScceecverierieiieieeie ettt et eeeteste st e st esteenseessessaessaesseeseensesnnesnes 100
ADS ettt b e bt b et a et b e et b e bttt nee 101
DOTAETIAYOUL ...ttt 103
L0 ettt b et ettt et na et et e be et e re st ent et ensenne 106
070 0 USSR 107
PAZCT ettt ettt et ettt s he e bt e bttt ea bt et e e bt e e bt e bt e bt et enbesaeenaee 108
SIMPLEEIIA. ..ttt ettt ettt b et ae et e 109
SPIIE. ettt e b e b e eraeeae e re e be et e enbeetbeerresaaeaeas 110
710 OO OSSOSO SO U TP PRTRURORRRURRO 112
BADI ..ttt bbbt et b e e be et tens 113
TOP LeVEl AtIIDULES. ... eevvieiiieeieciieieeie ettt ettt et etaesaeesreesbeesbeesseesseesaessaesseesseensesseenens 116
EAILIOCK ..t 117
(1167 3 o1 OO RSO PPTUUPTPPRRTORROIN 117
e 6 3V USSR 118
L GTS] 0121 SRR 118
T4 16 o0 I T PP 119
AEAWET ...ttt ettt et ettt e bt e bt et e et e saeesae et e enteenteeneeeneenneenean 119
WIZATA ettt ettt et b e bt ettt nae 120
TEVEAL ..ttt ettt st b e bttt et a e e bbbt b et e be st nae 120
53 T OSSPSR 121
EXIE. ettt ettt ettt et h e bbbt et she e she e sa ettt eat e et b sbnenbe e been 122
DIttt sttt e b et e e et e e st e ra e ta e beenseenreeneennes 123
TITIAZE ... veeeteeeateeeiiee et e ettt e st e st e st e e sttt e s bt e sttt e sab e e bt e e sabeenbbeesabe e bt e e abe e bt e enaae e bbeenaneenn 124
LADCL. ..ttt 124
DULEOTL .ttt et 125
L0307l USSR 126
[0 =1 01U 127
LOCK ettt ettt ettt et et n e nneennean 127
101 1110) o OSSOSO 128
WWEAZEL .ttt sttt ettt ettt b et b e bt et et nae 129
A 4<]0]o7: 151 OSSOSO 131
INDI bttt ettt bt b ettt b et be et et aens 131
INOTEUL TaZS ittt ettt ettt et et et e et eestee s baeenteesabaeenbeesnsaesnseesnsaesnseenn 132
1Yo} SR PUR PR SRS 133
CONEXE (AEVICE COMEEKL) uvrurinieiieiieiieieetesetesttesteeseeseenaeseeeseeeseenseenseensesesessaensees 133
SUDSCIIPLION 1.ttt ettt et et e e st e st e et e e seenseesaesaeesseenseenseenseessenssensnensens 134
TTIETA L c.eeeteeie ettt ettt ettt ettt et ettt st st b et ettt et h e h bt e e sane e 135
A4 e g U 135
LA Te g ST 01010 USRS 136
LOOKUD . ..ttt ettt et ettt et sae ettt et e ne e s e e neenean 138
SEYLE ettt ettt et e e e ebee b naean 140
1o70] 103 SRR UUPTRPRR 140

6 e ogScript Reference

DashBoard CustomPanel Development Guide

OZSCIIPL e euteeutetieteete et ete et e et e teesteenteeateesbesseessaeseenseenseensesaeesseenseenseenseenseensenneenneen 141

COMSIIAINTeeiiiiiieieieee et ee et e e e e eeeetee e e eeaeeeeeteeeeeareeeeenaeeeeenaeeeeesseseennneeeennneeeaan 145

PATAINIS .ttt ettt ettt e st e sttt e st e e sttt e sab e e bt e e sabeesateesabeesabeesabeenateesabeenateesabeenates 152

151001 GO RPN 152

TS 1 1= OO RRRRRRRRRRRIN 154

BASK ettt e e e e et e e e et e e e e e e s et e e eeateeeeaaaeas 155

[50001S) 421 RSP RRROTTRRRRP 156

INCTUAE ... ettt e e e et e et e e e saa e e s enaeeesenaeeeeas 157

Device RESOUICE DECIATAIONSccuvviiiieiiie ettt eee et e s et e e e e e eeneeeeseaneas 157
ReSOUICE XML FIlE....vviiiiiiiiiieeie e 157
COMUMANAS ..ottt e et e e e e et e e e et e e e eeaaeeeeenaeeesenaeeeeennaeesennneeeeas 158
COMIMIANG ...ttt eeee e e e e et e e e et eeeeeaaeeeeeraeeeeeneeeeennneeeennneeeann 161

070 1N iSRS 161
COMSIIAINTeeiiitiieieieeeeeteeee et e e e e e e et e e eeaeeeeeteeeeeareeeeenaeeeeesseeeeesseeeennneeeennneeeann 162

(o1« TSRS 163

4221 00 (=TSRRI 164

10153 0L RPN 164
TNETIUZTOUD ..etentientientienieeuteeeteattestee bt esteenteeaaesaeesaeesbeenbeenteemteeseeebeesbeenbeenbeenseensesaeenaes 165

0] 001571 L0 DU RPPRRRRRRRRN 166
COMTIZIMEIIUL .ttt ettt ettt e sb et et eateee e e sbeesbeennean 167

PATAINIS c.teitieiiieeitee ettt e st e sttt e satee sttt esabeessbeesaseessseesaseeasseessseensseesaseensseesnseensseenaseennses 168

0121 0o USRS 168

PATAM (STIUCE) weevvientieetieeieeeieettete et ete et e st e steesaeebeesbesseesseeseesseesseessesssesseesseessenssennes 170

Device RESOUICE TAZS ...cuviriieeieiieiieiieie ettt sttt et et s eaeesaessaesseenseensesnnesees 172
TNEIIUGTOUD +euvteeurreenteeetteeteeeteeenteeebeeeteesbaeenseesabeesseesabaeenseesabeesnseesasaesaseesseesseens 173

110153 01 DO TSSO USRNSSR 173

S8 1 BRSSP 174

[o1a) 1 15] 5 211 | SRR 176

Lo Tu7e) 4L oY | GO 176

(<16 111) GO PPRRRRRRRRIN 177
SUIMITIATY ettt et et e etesateseteste et emteeateebtesbee b e e bt embeemeesaeesaeesbeebeenbeenbeesnesseenbeensean 178
STATUSCOIMIDO ...t e et e et e e s et e e e enaeeeeenaeeeeas 178

MACTO EXPANSION.eeiviiiiiiiieieitiesieetieieeteeteesteesteesteesbeesaesseesseesseesseessessseessessseseessesnsenseennns 180
By 10 1L SRR 181
GAEVICEY 0. oot e e e e earraeaan 181

BTy (o] YU 181
QOVALIUCYD .o e e e e e e e e earaeaan 181
DOWIAZELY0 ..ottt bttt et st 183

B Te10) 4 1 8 YRR 183

G ODASEOTAYD .ottt e et e e e e e e e e e s e et e et e e e s eennaes 184
Yofully-qualified-1d%0.coeeieeee e 184
QPANEI-PATNYD .. e 184
QAPP-PANYD . e 184

Q0IAY0 e ettt e et e e e ar e e eaaeeaan 185

G OCVAL[OZSCIIPL] Y01 euveerrieereeeeeeeieete et et ere et e et e taeste e seesbeestesaaesseesseenseessesssanssenseensens 185
ogScript Reference 186
ADOUL OZSCIIPE -ttt ettt ettt et et e et eate s et e st e e te e eeeneeeseesseebeenseeneeeneeenee 186
JAVASCIIPE ..ttt ettt ettt e et e et e et eeae e e teeenbeeeataeenbeeenbaeenree s 186
Commonly Used FUNCHONS.couiiiiiiieieieieesee et 187
Functions Set in the USer INTErfaceoc.vvviiiviiiiiiiiieceeeeeeeee e 187
MultiSetScriptable ODJECtccvevieiierieeiieie et 187

OZSCIIPE ODJECE 1.uvievviiiieiiieieeie sttt ettt et e et e e eeta e teeste e beesseesaesseesseenseesseessenssanseensens 188
F-Ya [a (@14 [@) Lo 1Y SRR 195
AAAREMOLETIIZEETeeuveeeeeeeieeiieiieie ettt ettt et e st e st et e enteensessaessaensees 195
APPENAXIML ...ttt na e e e nnaennees 196

i 1 1e] 25 (TP SS 196
ASYNCE TP .ttt sttt et nnean 199
ASYNCEFTPGEL ...ttt sttt et saeenneas 201

ASYNCEF TPLIStFILES ... 202

DashBoard CustomPanel Development Guide ogScript Reference o 7

ASYNCHTTP ...ttt et ettt e saae e 203

ASYIICPOST. ..ttt 204
CANCEITIMET ...ttt et 204
ClOSEPANEL. ...t 205
COLOTTOHSL ...ttt et nneas 205
COPYBYLCAITAY ...ttt ettt ettt nee e nnees 206
COPY TEXL. ettt ettt ettt st st sae ettt et ee e bt e nbeebean 206
CTEALEAIMPSEINAET ..ot 207
CTEALEASYNCEXEC ..ttt ettt st sttt et sbeesaeenaeas 207
CTEALEBYIEATTAY ..eeuvieeiiieiiieeiie ettt sttt ettt s et e e st e et eesaae e bbeenaneenes 208
CIEACFIICINPUL......eeiiiiieii et esb e e essbessaenees 208
CIEAtCFIIEOULPULc.ieiiieii ettt esaeseaesneenneas 208
CTEALELISIENET ... eveniieiceiccit ettt ettt st 209
createMessageBuUIlderooieiieiicieeee s 209
CIeateMeSSAZEPAISETiiuiiieieiieie e 210
CIEAtEVDICPSENAET ...ttt 211
4151 01 PSR SR 211
FITEGPL....e ettt 211
TOCUS -ttt ettt sttt et et eee e b naean 212
10 OSSPSR 212
0L L1 AU PUR PRSP S 213
0] 5 10 S 1 1SR P TP SRS 214
GELAIIBYIA. .. oottt et ees 215
EtAPPLICAtIONPALN ..o 215
EtASYNCEXECBYI.....eiiiiiiicieeee e 215
(S 7N 138 1011 (< TP 216
EtBrOWSEIBYIA ..o 216
GEBUILA. ... et 216
getComponentSBYId.........cocoiiiiieiee s 217
GEECONTEXEIA ..ot 217
GEECUITENTUSET ...ttt ettt ettt sttt et e eesbeesbeenbeas 218
BOEFTIC ..ottt ettt b e ae e naeens 218
GOLFTIESIZE ... ittt enaeens 219
etIMAZEBYIA.....coviiiiiiiciieeeec e e 219
EtINCIUACBYIA.....coiiiiiee e 219
EtLiStENErBYLd....covieiiiie e 220
etMOdIfICAtIONDALEeeeeeeeieiieiieie ettt nees 220
(110 o) 1< 1 APPSR 221
EtPaNEIPath......cc.oiiii s 221
getPanelRelativVeURL ..ot 222
BETPOSIEION ...ttt 222
EPTIVALESIIING .ot 223
EtSCOPEAALIIDULE.eeieeeiieiee ettt 224
BOESIZEO ..ttt ettt ettt et et e et e et et e e b e e tbeerbeete e te e beenseenreeneennes 224
BOESIIINE ...ttt ettt ettt et e et e e saeesteseeeese e beesseesseesseesseesaesseesseenseensennsennns 225
EOtTIMETIMANAZETecvvieevieeieeiieciiecie et eie e te et e eteesteesbeesbeesbeessessaesseesseesseessesseennes 226
BIAC ettt st 229
NSITOCOIOTSIIING. ...c.vieeiieeiieiieeiie ettt ettt e e st et e sseenseenseenneens 230
BEED ettt et 230
INSTAIITIMET ..ottt sttt et e e nneas 231
ISCIOSEA ..ttt ettt et ettt st e et e sttt et et e ntesneennean 232
ISTIMETRUNNING. ...coniiiiiiii i et 232
JSONMTOSIIINE ...ttt ettt et st et e e e et e b e sbeebeeneeneeneens 232
PATSEXIMLL ..ottt et et et e et e e e et e ebeeetaeentaeeraeenree s 233
PASTETEXE ittt ettt e sttt et e et e st e e et e st e e nnteesabeennees 234
PULODJECE ...ttt ettt ettt et e b e e b e steesteeaeesseesseesbessaessaenseessensnenens 234
PULPTIVALESIIINEG. ..c.veevvieeieciieeiieteeie ettt ettt et steesae et e e b e esbestaessaesseessessnenes 235
PULSIIINZ ..ottt ettt ettt et et et e et e sseessee st enseenseensessaenseenseensennnesnns 236
TEIOAM. ..ttt ettt sttt 236
TEIAINICe.eteeeeieeteenteeateeeteeueeetseste e bt esteesseeanesaeesaee bt enseemseemneeaneeunenueenbeenseenneennesanenae 237

8 e ogScript Reference

DashBoard CustomPanel Development Guide

00101531 (o) s H RS 238

TEPOSILIONBYPEICENL ..ottt 238
TEVEAL ettt ettt bbbttt a et be sttt ten 239
TUNXPAN ..t 240
SAVETOFTLC ...ttt 240
SENAUDPASBYLESeeuiieiiteiieeeieeiee ettt ettt sttt et sneennean 241
SENAUDPBYLEScetiiiiiiie ittt sttt et 241
SENAUDPSIING.eentieiieiie ettt sbeeaeas 242
SELANICROTPOINES ...cutiiiiiiiiiiiie ettt 242
SEESIZE .ttt bbbt et b ettt nee 243
1A (ST P USSR 243
SEEXIML L.ttt ettt 244
LOBOTIOIML. ..ttt e e s 247
110 K0 OO OO PPORPPRRPPRRRTP 247
£015) (G2 T U 248
PATAMS ODJECT ..ottt ettt ettt ettt et e e st e bt e be e bt ente e et enteeneeseeenaeenteens 249
PArams FUNCHIONSooiiiiiiiieiiee et 249
o (T 11 070] o) NP TUPRR 251
createIntChoic@CONSIIAINLoc.eiriiiiiiiiieieie e 252
CTEALELINKEACOPY ...ttt sttt sttt 252
CTEALEIMUILISEE ...ttt et 252
CTEALEPATAIN ..ottt et 254
createStringChoiCECONSIIAINT...........ccvieeiieieeieiiesie ettt ete et seesre e ebeeeseseeeseeeeees 254
dElEtEPArAIM ...ttt 255
GELAIIVAIUES. ...ttt st sttt et e s e sneenseenees 255
(L0711 11 L USSR 255
BEtDIEVICESTALUS ...ttt sttt nean 256
EtEIEMENTCOUNLeoiiiiiiiii ettt neas 256
getldentifiedCONSLIAINT.ccieiieieie et 256
EPATAIML. ...t e 257
getParam(OID, INdeX).TEMOVEcoueiuiiuieiieieieriee ettt 257
GEESTIEAIMN 1.vieuiiieiieeiie ettt ettt tte et e et e e be e e bt esbaeeateesnbeeeabeesabaeenseesnbaeensees 258
BOEVALUC ...ttt et ettt et ettt et te e beenaeenbeenneenes 258
OV AIUCASSITING ...ttt ettt ettt eb e e esseesbeesbeesseesseesnenns 258
ISDEVICEONIINE ..ottt ettt et 259
1SDEVICEREAAONLYc.vieiiiiiieieeee e 259
ISPrIvateParamCONtEXLcc.eeveriiriiriirierieeiiee et 260
1EPIACCCONSIIAINT.eeiieiiieiieeiee ettt ettt ettt b et e e eeee e 260
1EPlaCEVIEWCONSIIAINTeeeiiieeieieeie ettt ettt sttt eee e ene 260
TESELATIVAIUCS ..o 261
SEEAICCESS ..enttenttenteete et ettt et et e et et a e et e s bt e bt e bt e bt et e eat e she e nh e et et ea b et e e ebeenbeebean 261
SELAIIVAIULS ...ttt sttt 261
SEEIMEIIUSTALE ...ttt ettt st sttt et et b e been 262
SEtPTIVateParamOCONTEXtcoveiiriiriiriiiieeiieeeee e 262
SEESTIBAI ...c.eeutieniieieete ettt ettt ettt et sttt sbe et et et eanesanenieenneen 264
SEEVAIUC. ...t bbb bt 264
SEtVAIUCREIALIVE ...ouvieiiiiiiicici e 265
SUDSCTIDE. ...ttt bbbttt b e sttt 265
UNSUDSCTIDE. ...ttt ettt sttt et b st ebe et esneaens 266
17010 1« AR USSP 267
ParamScriptable ODJECTooiiiieiieieie ettt 268
TOSSTALK ODJECE ..ottt ettt ettt ettt et eae bt et et et e eteebeebeebeeneenseeeneas 269
TOSSTAIKEX ODJECT ...ttt ettt ettt ettt st b et e et et e beebeebeeneeneeeenean 272
TODOT ODJECT ..ttt ettt ettt sttt ettt et e e et e s besaeeb e e st enbe e et e ebeseeebeeneaneeneenean 273
VACD ODJECL..eivieiietietiete ettt ettt et e ste e s teesbe e b e esaesaee s st eseesseesseesseessessseseesseensesseenens 273
NKSCIIPE ODJECT...uiitiiiieiieie ettt ettt ettt b e et e steesseesbeesseesbeesseessesseesseessesnsenseesens 274
WEDCAM ODJECE....uiiiiiiieiicii ettt ettt ettt et e et e et e esaesaeesseesseesseesseesseessessaesseesseensesseesnns 277
INDI ODBJECE .ttt sttt ettt st b e e bt bt et et e st st b sbeeae et enae e 278
RPM ODBJECE ...ttt bttt ettt sttt et et et bbbt eane e eneen 278

DashBoard CustomPanel Development Guide ogScript Reference ¢ 9

Appendices
IN THES SECTIOM. ...ttt ettt ettt ettt ettt et beeaeeae et e e sbesteebesaeeneeneeneeeens 279
Appendix A: Widget Hint Definitions.........coeerieiiiiiiiiiineneieeeee e 279
Appendix B: Reserved ObJect IDS.......cccviviiiieriieiieiecie ettt e 281
RESEIVEA OIS ...ttt sttt 281
Reserved MFC and DashBoard Connect (slot 0) OIDS.........cccccceevverieneenieernennnene 284

10 e ogScript Reference DashBoard CustomPanel Development Guide

Introduction

About this Guide

The CustomPanel Development Guide is part of the DashBoard Help Guide series. These guides aim to
help you get the most out of your DashBoard control management system.

DashBoard Help Guides include the following:
e DashBoard User Guide / Help — The complete reference guide for DashBoard.

e DashBoard CustomPanel Development Guide (this guide) — Learn how to develop custom panel
applications within DashBoard.

e DashBoard Server and User Rights and Management User Manual- Provides general information
on the DashBoard server, user rights, functions, and possible applications.

e NK Plugin Guide — Learn about NK plugins.

This guide describes the tools available for developing CustomPanel applications within DashBoard.

The following sections are included:

e DashBoard Data Model — An overview of how data and UI elements are stored in DashBoard.

e OGLML Reference — Describes OpenGear Layout Markup Language, which is an XML
specification for describing how Ul elements are presented within the DashBoard client.

e ogScript Reference — Describes how to use ogScript, a JavaScript-based scripting language, to
define advanced behavior of CustomPanel applications.

CustomPanel Overview

CustomPanels are applications which run within the DashBoard client. These may be served up by a
device directly, or created by a user using DashBoard’s PanelBuilder feature, by writing XML code, or
a combination of both. CustomPanels may integrate control of multiple connected devices to provide
complete solutions to many workflow problems.

PanelBuilder

PanelBuilder is a DashBoard tool for creating custom interfaces for products from Ross Video and
partner companies, such as openGear cards, DashBoard Connect devices, CamBot robotic camera
systems, XPression graphics systems, Ultritouch, and Carbonite and Vision Production Switchers.

PanelBuilder allows users to create custom control interfaces with any combination of openGear control
and monitoring parameters from any combination of openGear cards and DashBoard Connect devices.
Users can build graphical navigation layouts based on signal flow or equipment location for efficient
device and signal monitoring. Custom control panel layouts can provide user, or function specific
control windows for specific events or situations that require quick access to various parameters from
multiple devices.

Benefits:

DashBoard CustomPanel Development Guide ogScript Reference o 11

e Create custom control panels. By eliminating unused controls, the operator can work with an
uncluttered, efficient GUI that's perfect for the task at hand.

e Group various controls together from multiple products. Focus on the production, not how it's being
produced.

e Create graphical navigation layouts. Present an overview of your facility with simple status
indicators that can be drilled into to get to the details.

With CustomPanels, you can:

e Allow your operators to focus on the production, and not on the equipment being used. This is
especially useful when operators are experts in what the production needs to be, but not how it's
made such as in a House of Worship, School, or Corporate setting.

e Support a new workflow using existing equipment. For example, you can select, preview, and
display static graphics using a Ross Video Master Control MC1-MK.

e C(Create a Network Operations Center view of geographically dispersed production equipment, with
system health status aggregating up through each level so that you can quickly drill down to where
the trouble is when faults occur.

o Integrate control of multiple devices into a single, logically laid out control surface. For example,
you can trigger graphics, video servers, and transitions from the same interface.

e Control other vendors' equipment. With over 50 openGear and DashBoard Connect partners, it's
quite likely that the equipment you want to control already understands DashBoard. Otherwise,
advanced users can take advantage of PanelBuilder's rich and powerful scripting support to
communicate with third-party equipment using UDP.

CustomPanel Framework

Applications built in DashBoard’s PanelBuilder are referred to as CustomPanels. Application
development in DashBoard employs a number of complementary technologies to provide user interface
applications. These include:

e openGear Protocol (OGP)

e Resource XML files

e openGear Layout Markup Language (OGLML)

e ogScript

e Other control protocols (such as VDCP, RossTalk, etc.)

The openGear ecosystem, in general, consists of Devices (such as openGear Cards, or stand-alone
products) and the DashBoard client. Devices communicate via network connection, and in the case of
openGear cards, through a CANBus interface.

data source data store application client interface

|
! i [
xml xml | openGear |
- A >
oed file access : Plugin |
|
| params |
|
| menus |
|
| external objects |
ogp | |
1
device json | ogiml »| i |
|
I
TCP/IP | x 2 :
! [
! [
card I
|
! L [
| ogScript api
> DashBoard !
! [
| o —
______________ e :
CANBus
External data source non-ogp device

12 e ogScript Reference DashBoard CustomPanel Development Guide

Figure 1 — DashBoard Application Framework

DashBoard Panel applications consist of a number of elements that the designer uses to create an
application. These are:

e Data sources
e Internal data store
e Application

e (Client Interface

Data Sources

Data may be sourced from several sources. These include:

Physical devices connected via ogp
XML files (.xml or .ogd)
OGLML document with embedded parameter XML data

Other external data sources

DashBoard manages synchronization between XML sources and, via OGP, physical devices. The data is
stored in DashBoard’s internal data store. The details of OGP and JSON protocols are available to
registered openGear partners, and are detailed in openGear Development Guide Part II - Software
(8200DR-006).

External data sources, not connected via OGP or a DashBoard xml file, must be managed by the user
application via ogScript.

DashBoard allows for multiple data sources to be connected to any application. This allows for multiple
devices in addition to local parameters and resources to be incorporated into a CustomPanel application.

Datastore

DashBoard maintains an internal data store of information. Using OGP or JSON protocol, DashBoard
retrieves information about the descriptor and value of parameters, menus, and external objects. Any
changes to the Data store from the client or application is transmitted back to the device. Any changes to
the Data store from the device are propagated to the Client. Code may be triggered when a parameter
changes based upon an ogScript onchange event registered against the parameter.

Application

The application can be implemented using a variety of tools, depending upon the particular
requirements. The application uses the data store to access device information. The following tools are
available for developing applications:

e openGear plug-in: The basic plug-in automatically generates a user interface based upon the
parameters and menus defined in the data store. The plug-in also supports OGP messaging to allow
other basic device control.

e OGLML: OGLML is a markup language that may be used to create CustomPanel control layouts
within DashBoard, beyond the default control layout provided by the openGear plug-in.
Applications built in OGLML may include customization of location, size, and appearance of
controls. The controls in an OGLML application manipulate parameters stored in the data store.

e ogScript: ogScript provides a JavaScript engine to extend the capability of OGLML-based
applications. ogScript may also be used to access external data sources (either file or network-
based) as well as provide for custom interface to non-OGP devices.

Client Interface

The application is presented within the DashBoard client. DashBoard provides services to display the

application, interface with devices, and maintain the data store. DashBoard also provides mechanisms
for device discovery, logging, and alarms, and features an interactive GUI named PanelBuilder for the
creation of CustomPanel applications.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 13

openGear Protocol

openGear Protocol (OGP) is a basic communication protocol between DashBoard and devices. It
provides a mechanism to communicate the basic Data Model, manage parameter changes and describe a
basic user interface. With OGP, devices can present a rich user interface using a standardized layout.

There are several variants of OGP, the details of which are described in in openGear Development
Guide Part II - Software (8200DR-006), available to registered openGear partners. The knowledge of
the details of the protocol mechanics is not required to develop applications within DashBoard; OGP is
simply a mechanism which communicates the Data Model between devices and DashBoard.

Resource XML File

The structure of a device’s parameters and menus may be expressed in XML format. This file can be
generated in DashBoard from an existing device by right-clicking the device and selecting “Save
Configuration to file”. This will generate a “. ogd” file containing the XML representation of the
device.

A resource XML file is also generated by PanelBuilder, if “External Data Source Panel File” is selected
when creating the CustomPanel. This file will be given the extension . xm1.

It is also possible to declare resources directly within an OGLML document using the Resource XML
syntax.

openGear Layout Markup Language (OGLML)

OGLML is an XML layout language which augments OGP by providing a set of tools to customize the
layout and behaviour of a user interface presented in DashBoard. An OGLML document also allows
controls from multiple devices to be combined into a single user interface, called CustomPanels.
CustomPanels may be designed interactively using DashBoard’s internal PanelBuilder feature.
PanelBuilder provides a GUI to customize the user interface, and generates an OGLML document.

When a new CustomPanel file is created within DashBoard’s PanelBuilder, an OGLML file with an
extension .grid is created.

OGLML is strictly a layout tool for tailoring the presentation of a device’s user interface within
DashBoard. It simply specifies how a devices’ resources are displayed, and relies upon resources in the
data store to provide the values for the content. The data store must be backed by a data source, through
one of the mechanisms discussed above.

ogScript

ogScript is a programming language developed to interact with DashBoard-enabled devices. It uses
JavaScript functions, syntax, and primitive object types. To enable CustomPanel developers to interact
with panels and devices, ogScript adds some new global objects to JavaScript. Most JavaScript works in
ogScript scripts, although you might run across an occasional item that does not work.

ogScript may be embedded into an OGLML document to add additional functionality based on a set of
trigger events (for example, when a page loads, when a parameter changes, mouse clicks, etc.). There
are a number of API definitions to allow control of DashBoard’s features, access to the data store, and
connect to external devices and data sources.

Getting Started

Building a CustomPanel Application

There are several steps in creating a CustomPanel application. The easiest way to get started is to
interactively design a layout with DashBoard’s PanelBuilder. The basic steps involved are:

e Define data sources

e Define local parameters

14 e ogScript Reference DashBoard CustomPanel Development Guide

e Add controls to the layout in PanelBuilder
e Edit OGLML file for fine-tuning
e Add ogScript to the CustomPanel for advanced functionality

PanelBuilder is an interactive tool that allows quick and easy layout of control; its output is an OGLML
document (with a . grid extension).

Refer to DashBoard User Guide help topic or the DashBoard User Guide (8351DR-004) PDF for
detailed instructions on building CustomPanels in PanelBuilder.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 15

DashBoard Data Model

In This Section

This section describes the underlying data model for openGear and DashBoard Connect devices.

This section includes the following topics:

Device Data Model

Customizing Menus Using Display Hints
Data Types

External Data Objects

OGLML Documents

Custom Widgets
Custom APIs Within CustomPanels

Device Data Model

This section includes the following topics:

Data Object Hierarchy
Device / Card

Parameters

Constraints

Parameter Structure Objects

Parameter References

Menus

Data Object Hierarchy

DashBoard stores a device’s data representation in an object hierarchy.

16 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

device menu-groups menu-group menus menu
— menu-group — menu
— . L menu
— params param constraint
— param — config
r—— - - - - - - - - il
I param |
| value (sub-oid) | |
I I
| || param |
(sub-oid)
| struct descriptor |
I I
| n |
D R R -
— commands command value argument
— command — response argument
— . — constraint
L config

Figure 2 - Data Object Hierarchy in DashBoard

This hierarchy is explicitly exposed in the XML representation. OGP does not explicitly reference the
data through the object hierarchy, but individual data elements may be accessed via their OIDs.

Device / Card

All information regarding a device is encapsulated within the device object. This is encapsulated with a
<card> tag in the XML representation. Each node in the DashBoard tree is treated as an independent
device object. The device object contains a list of parameters and menu-groups.

Each device node in the DashBoard tree has a unique node-id. This node-id is used by DashBoard to
reference parameters from multiple devices within the same client interface. The node-id can be
determined by selecting the node in the DashBoard tree and selecting “View Connection Information”
from the context menu.

DashBoard CustomPanel Development Guide ogScript Reference o 17

Connection Information ®

Slot 3: ZTC-8399

Property Value

Connection Settings

wvalid true

node-id 172.16.9.31

address 172.16.9.31: 5253

port 5253

node-name Jim's Frame

servicelrl servicetbroadcast-equipment
equipmentType opengear

discoveryType SLP

Separate Mode Info
{ node-id 172.16.9,31:5253
Slot 3
ZTC-8399 |

Figure 3 - Connection Information

Parameters

The configuration and state of any device can be represented by a list of parameters holding information
about the device, including:

e identification: device type and supplier name, software revision, etc.

e status: alarms, voltage, current, temperature, input signal presence and format, etc.

e configuration: user-specified setup parameters (gain, delay, output video format, etc.)

Each parameter is identified with an Object Identifier (OID), and consists of two parts: the descriptor
and the value. The descriptor defines the structure of the data, and the value is the content, which is
dependent on the descriptor. The descriptor may also specify a constraint, which limits the value to a
certain set of valid values.

Object Identifiers (OIDs)

Each parameter is identified by a unique object ID (OID). There are 2 types of OIDs supported: numeric
and string. All devices must support numeric OIDs, and may optionally support string OIDs. However,
use of meaningful string OIDs is strongly recommended for new designs, as it clarifies code and
simplifies the development of CustomPanels. Handling of Numeric and String OID parameters utilize
different message types. Devices implementing String OIDs must support both message types.

Numeric OIDs

Numeric OIDs are 2-byte integers and referenced in this document as a 16-bit hex value, for example:
0x0105. In JSON messaging, numeric OIDs are encoded as strings. For example, the OID 0x0105 is
encoded as the string "0x105".

String OIDs
String OIDs allow text-based parameter identifiers, and must follow the following encoding rules:

e Must not contain spaces
e May only contain the following characters: a-z A-Z 0-9 .(dot) _ (underscore)
e Are case sensitive

e There is no set limit to the String OID identifier length; however, string OIDs over 255 characters
cannot be carried over CAN or TCP/IP binary protocol.

A string OID identifier should not be confused with the parameter name. A string ID is the variable
name, the Parameter Name is the display name for the parameter. For example a parameter may have
the OID “mle.2.keyer.3.ckey-state” and the parameter name could be “Chroma Key”. Software refers to
the value “mle.2.keyer.3.ckey-state”, but the default label on the DashBoard GUI would be “Chroma

99

Key”.

18 e ogScript Reference DashBoard CustomPanel Development Guide

Descriptors

Parameters are defined using a descriptor containing its name, data type, data length, constraint (set of
permitted values) and other information. When DashBoard first contacts a device, it requests the list of
parameters for that device, and the descriptor for each parameter. This information is used to create an
appropriate user interface for the device and to properly interpret and display parameter values reported
by the device.

In JSON messaging, descriptor objects are identified by the naming convention _d_oid.

The descriptor for each parameter contains the following fields:

Field Description

oid Object Identifier for this Parameter

version Version of the descriptor

name Parameter name to be displayed in a user interface
data type Data type (integer, float, string, or array thereof)
data size Nominal size of the data field

access Read/write access indicator

precision Precision to displayed for printed numbers

widget Graphical display hint for this parameter

constraint An object specifying the set of permitted values for the parameter

Version

The current version is 2. Permitted versions are 0, 1 and 2. Versions 0 and 1 are identical to version 2,
except that widget hints are ignored.

Name

This field provides the parameter name to be displayed in DashBoard. The name does not need to be
unique. It may be ignored by some software (e.g. the SNMP agent).

Data Type and Size

Data type indicates the storage type for the parameter value.

Access

This field indicates whether the parameter can be modified. This enables the control software to display
an appropriate control for read-only values, or to disallow edits. In OGP, the supported values are:

Access Value Description
ACCESS_READWRITE 0x01 Parameter may be modified by the control client
ACCESS_READONLY 0x00 Parameter is read-only, and may not be set by the client
Precision

When used with numbers — this field defines the number of digits following the decimal point
displayed for printed numbers. It applies mainly to floating point numbers.

When used with string arrays —this field defines the maximum number of bytes reserved for a single
element in the array. If it is 0, no limit is set for each element, and the maximum number of bytes in a
parameter value is shared arbitrarily amongst all elements in the array.

Constraint

Constraints allow data to be limited to a certain range or certain values.

Widget Hint

The widget hint specifies the type of graphical control that should be used to display this parameter. To
ensure backward compatibility with DashBoard 1.0, widget hints are ignored if the version field is less

DashBoard CustomPanel Development Guide ogScript Reference ¢ 19

than 2.

Constraints

Constraints are an important part of the parameter descriptor. It specifies a legal range of values which
the value of the parameter may take. Certain constraints also impact how the parameter is displayed
within DashBoard. Certain widgets require specific constraints, while others may behave in different
manners depending upon the constraint applied to the parameter. For array parameters, the same
constraint applies to each element of the array.

Constraints are specified through a numeric identifier called ctype. The supported constraint types are:

Constraint Name ctype Param Types Description
NULL_CONSTRAINT 0 All Parameter is unconstrained.
RANGE_CONSTRAINT 1 INT16_PARAM Parameter is bounded by a

INT32 PARAM min-max range. Display
INT16_ARRAY min-max range may be
INT32 ARRAY different from the value
= range.
FLOAT_PARAM
FLOAT_ARRAY
CHOICE_CONSTRAINT 2 INT16_PARAM Parameter must be selected
INT16 ARRAY from a set (enumeration) of
- name-value pairs (up to 255
choices)
EXTENDED_CHOICE 3 INT16_PARAM Parameter must be selected
INT16_ARRAY from a set (enumeration) of

name-value pairs (more
than 255 choices)

STRING_CHOICE 4 STRING_PARAM Provides a set of available
STRING ARRAY choices. Parameter may be
- selected from this set, but
arbitrary values are also

permitted.
RANGE_STEP_CONSTRAINT 5 INT16_PARAM Parameter is bounded by a
INT32 PARAM min-max range. Step size
INT16 ARRAY indicates the amount to

increment/decrement the
INT32_ARRAY value each time it is

FLOAT_ARRAY

ALARM_TABLE 10 INT16_PARAM Each bit in the parameter is
INT32 PARAM a status flag, so param can
INT16:ARRAY display 16 or 32 c_o_ncurrent
named error conditions.
EXTERNAL_CONSTRAINT 11 All Indicates that the constraint

is encoded in an external
object, rather than encoded
within the descriptor.

Constraints are normally embedded within the parameter descriptor however; they may also be encoded
separately as external objects (which allow longer choice lists, etc.).

A detailed definition of each constraint type, and rules for encoding each constraint, are provided below.

Note: The constraint is considered to be a contract for the parameter. DashBoard will not
attempt to set a parameter to a value that violates the constraint. Similarly, the device
must ensure that the value reported for each parameter complies with the constraint.
Behavior of some control software may be unpredictable if the reported value violates
the constraint.

20 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Unconstrained

To leave a parameter unconstrained, use the NULL_CONTRAINT constraint. Any parameter which
does not have any other constraint applied must specify the NULL_CONSTRAINT.

Range Constraints

To constrain a numerical parameter to a specific range of values, the RANGE_CONSTRAINT or
RANGE_STEP_CONSTRIANT must be specified. Both constraint types allow a minimum and
maximum parameter value (minValue, maxValue). Additionally, an optional display minimum and
maximum value (minDisp, maxDisp) may also be specified. This allows the display range to map to
normalized parameter range. The value to be displayed is determined by the following linear mapping:

(value—minValue)x(maxDisp—minDisp)

displayed value = minDisp + (maxVabue—minValng)

Note that minDisp and maxDisp must be the same data type as the parameter. For example, to display
the value of a 12-bit register (0-4095) as a percentage, set

e (minValue, maxValue) = (0, 4095)

e (minDisp, maxDisp) = (0, 100)

The difference between RANGE CONSTRAINT and RANGE STEP_CONSTRAINT is the latter also

allows a step size to be specified. The step is specified in the same data type as the parameter and is the
minimum change increment on the parameter value (not necessarily the display value).

Note It is strongly recommended that the range (maxValue — minValue) be evenly divisible by
the provided step size. Otherwise, when starting from the minimum, the parameter will
use values of minValue + n * stepSize and when starting from the maximum, the
parameter will use values of maxValue — n * stepSize.

Range constraints applied to an array parameter apply to all members of the array.

Choice Constraints

Choice constraints allow a parameter to provide a list of choices. CHOICE_CONSTRAINT and
EXTENDED_ CHOICE constraints provide a mechanism to create a set of enumerated values for an
INT16 or INT32 parameter. This allows integer types to be limited to a specific set of valid values, as
well as providing a mechanism to provide text choices in the DashBoard Ul for these parameters.

STRING_CHOICE constraint provides a set of default values which may be populated in a
STRING_PARAM, however unlike CHOICE_CONSTRAINT and EXTENDED_CHOICE, it does
not limit the user to only these values, any value may be used in the string.

Alarms
Assigning an ALARM TABLE constraint to an integer parameter tells DashBoard to treat the integer as
an array of alarms. When alarms are set, they will impact the overall status reporting of the device.

External Constraints

An EXTERNAL CONSTRAINT is used to indicate that the constraint for this parameter is provided in
an external object, rather than embedded within the parameter descriptor.

This constraint simply provides a reference to the external object, encoded as shown in the following
table.

Parameter Structure Objects

Parameter structure objects, or structs, are user-defined structures defined within parameters. They are
defined by encoding a struct descriptor within the value object of a parameter. This is done by inserting
an array of sub-OID descriptors (param objects) into the value field of a parameter. Structs must have

DashBoard CustomPanel Development Guide ogScript Reference o 21

their type set to STRUCT or STRUCT-ARRAY.

A parameter may inherit the struct descriptor from another parameter through use of a STRUCT
constraint which specifies a templateoid. The templateoid specifies the OID of a parameter whose
descriptor will be inherited, thus eliminating the need to define identical struct descriptor for each
instance of a struct parameter.

Parameter References

Sub-params within a structure may also be defined as references to other parameters. These behave
much like C++ or Java variable references. A parameter reference inherits the referenced parameter’s
type, attributes and constraints.

Menus

How a device is displayed in DashBoard is determined by the menu data provided by the device.
DashBoard provides two methods for a device to specify menu layout and structure:

e Default openGear layout
e openGear Layout Markup Language (OGLML)

Default Menu Layout

The default menu layout is designed to make it very simple for devices to display a menu structure.
Each menu comprises a name and a list of object identifiers specifying the parameters to be displayed in
the menu. Menus are organized into groups, where each group comprises a name and an array of menus.

22 o ogScript Reference DashBoard CustomPanel Development Guide

Menus are divided into menu groups. The default layout displays only 2 groups:

e Group 0: Status (read-only)

e Group 1: Configuration

Below is an example of the default layout:

Menu Tabs

Menu Tabs —\

Setup

Slot 3: ZTC-83 d

String Choice

Card state:

Product Hardware Test

Card Name Zeus

Edit parmissi Locked

Boot Count 441
Card Name

Extra Menu Login
Product B

Menu MNormal

Supplier

E— Param Selection MNormal
oard Rev

Serial Number

Software Rev

st Card

Numeric Arrays Progress

Parameters

~

Menu Group O

N

Menu Group 1

Figure 4 - Menu Layout

Each product may define any number of menus and groups; however, the DashBoard control system
recognizes two groups in the default UI layout: group 0 = status parameters (read only), and group 1 =
configuration parameters. Other menu groups are not displayed in the default UI layout presented by

DashBoard, but may be used in OGLML UI layouts

OGLML Menu Layout

Advanced menu layouts are available with openGear Layout Markup Language (OGLML). OGLML
documents can replace an individual menu or the entire device configuration in DashBoard

DashBoard CustomPanel Development Guide

ogScript Reference o 23

Customizing Menus Using Display Hints

The descriptor for each parameter includes a widget hint to allow the device designer to specify the type
of control to be used to display the parameter. The hints available depend on the parameter type, the
constraint type, and the values in the constraint for each parameter. This allows the designer to
customize the menu for each device.

DashBoard 1.0 ignored widget hints and provided a default control based on parameter and constraint
type. For backwards compatibility, DashBoard 2.0 (and later) ignores widget hints for parameters with
the version field set to 0 or 1, providing the same default behavior as DashBoard 1.0. To use widget
hints, it is necessary to set the version field within the parameter to 2.

When a read-only parameter provides a widget hint, a read-only version of the parameter’s preferred
widget is used. The exceptions are WIDGET DEFAULT (displays like DashBoard 1.0) and Alarm
Tables (display the alarm). Hints for status menu parameters are overridden for correct display in that
space.

Universal Hints

The following widget hints may be used for any parameter type:

Widget Name Value | Description

WIDGET_DEFAULT 0 DashBoard will choose what it thinks is the best widget
to use for the parameter type and constraint (makes the
parameter work like it does with DashBoard 1.0).

WIDGET_TEXT_DISPLAY 1 shows a read-only version of the parameter value (uses
same widget that is shown when WIDGET_DEFAULT
parameter is set to read-only).

WIDGET_HIDDEN 2 still uses space on the menu page and shows the label
for the parameter but show a blank area on the menu
page where the widget would be.

WIDGET_LABEL 100 Displays the value of the parameter as a read-only label

Separators, Titles and Layout Hints

The following hints are used with string parameters to provide separators, titles, and extended layout
options for menus. Parameters using these widget hints are treated as read only and constant — they do
not update live on the screen. Examples of each hint are shown below.

Widget Name Value | Description

WIDGET_TITLE_LINE 5 displays the value of the String parameter as a label
with all other parameter labels and a line across the
content area of the menu page.

WIDGET_LINE_ONLY 6 displays a line across the content area of the menu
page with no label on the left.

WIDGET_TITLE_ONLY 7 displays the value of the String parameter as a label
with empty space in the content area of the menu page.

WIDGET_PAGE_TAB 8 creates a 3rd-level tab within the menu page. The value
of the parameter is used as the tab label.

WIDGET_TITLE_HEADER 10 displays a title over the content area of the menu with

the value of the parameter used as the header text.

24 o ogScript Reference DashBoard CustomPanel Development Guide

WIDGET_TITLE_LINE (5)

This displays the value of the String parameter as a label aligned with all other parameter labels, and a
line across the content area of the menu page. The name of the parameter is ignored.

Figure 5 - WIDGET_TITLE_LINE hint.

WIDGET_LINE_ONLY (6)

This displays a line across the content area of the menu page with no label on the left. The name and
value of the parameter are ignored.

Figure 6 - WIDGET_LINE_ONLY hint.

WIDGET_TITLE_ONLY (7)

This displays the value of the String parameter as a label with empty space in the content area of the
menu page. The name of the parameter is ignored.

Other Stuft

Figure 7 - WIDGET_TITLE_ONLY hint

WIDGET_PAGE_TAB (8)

Whenever a new String parameter with a WIDGET PAGE TAB hint is found on a menu page, a new
3rd_]evel tab is created inside of that menu page. The label on that tab will be the value of the String
parameter. All parameters listed after each WIDGET PAGE_TAB String parameters (until the next
such parameter) are placed on a menu page inside of that 3™-level tab.

Horizontal Vertical Matrix Horz Horz

Figure 8 - A menu with WIDGET_PAGE_TAB hints.

Note Whenever WIDGET _PAGE_TAB hints are used on a menu, the first OID in the menu
should be for a String parameter with a widget hint defining the first tab’s label.

DashBoard CustomPanel Development Guide ogScript Reference o 25

WIDGET_TITLE_HEADER (10)

Displays a title over the content area of the menu with the value of the parameter used as the header
text. No label is shown on the left and the name of the parameter is ignored.

Choice Selec

Figure 9 - WIDGET_TITLE_HEADER hint.

Array Layout Hints

By default, all array parameters are displayed horizontally across a menu page. Adjacent OIDs of the
same size will format in DashBoard in a tabular format. For example, 3 array parameters with 4
elements each, the layout would appear as:

Array1 Name Array1[0] Array1[0] Array1[0] Array1[2]

Array2 Name Array2[0] Array2[0] Array2[0] Array2[2]

Arrayd Name Array3[0] Array3[0] Array3[0] Array3[2]

Figure 10 - Default array layout.

Column headers can be added by adding a read-only INT16 ARRAY parameter to the menu
immediately before the other arrays (widget hint WIDGET ARRAY HEADER HORIZONTAL). The
parameter is expected to have a choice constraint. The string values of the elements of this parameter
provide the column headers. The resulting display is:

Header Name Header[0] Header[0] Header[0] Header[2]

Array1 Mame Array1[0] Array1[0] Array1[0] Array1[2]

Array2 Mame Armray2[0] Array2[0] Array2[0] Array2[2]

Array3 Mame Array3[0] Array3[0] Array3[0] Array3[2]

Figure 11 - WIDGET_ARRAY_HEADER_HORIZONTAL hint.

Array elements can also be given a vertical layout. Changing the widget hint for the header array to
WIDGET ARRAY HEADER VERTICAL provides the following layout:

Header Name Array1 Name Array2 Name Array3 Name
Header[0] Array1[0] Array2[0] Array3[0]
Header[0] Array1[0] Array2[0] Array3[0]

Header[0] Array1[0] Array2[0] Array

Header[2] Array1[2] Array2[2]

Figure 12 - WIDGET_ARRAY_HEADER_VERTICAL hint.

26 e ogScript Reference DashBoard CustomPanel Development Guide

Array layout can be specified by including a read-only INT16_ARRAY parameter as a header, with one
of the following widget hints:

Widget Name Value | Description

WIDGET_ARRAY_HEADER_VERTICAL 15 indicates that the associated array
parameter and all subsequent
parameters should be displayed in a
vertical layout

WIDGET_ARRAY_HEADER_HORIZONTAL 16 indicates that the associated array
parameter and all subsequent
parameters should be displayed in a
horizontal layout

Normally sequential array OIDs will be formatted as a single table. If it is desired to break a block of
sequential array OIDs into multiple tables, it is necessary to insert a non-array OID, or switch from a
horizontal layout hint to a vertical layout hint (or vice versa). If multiple arrays of different size are
encoded with different sizes, the layout may be unpredictable.

WIDGET_ARRAY_HEADER_VERTICAL (15)

This hint indicates that the associated array parameter and subsequent parameters should be displayed in
a vertical layout. The elements of the parameter will be used as row labels for display. The names of the
following arrays are used as column labels. The header should be a read-only INT16_ ARRAY
parameter with a choice constraint to allow meaningful text labels. The elements of each array are
displayed as specified by the widget hint for that array.

The vertical array layout will be applied until another WIDGET ARRAY HEADER VERTICAL
starts a new set of vertical columns, a WIDGET ARRAY HEADER HORIZONTAL declares that
subsequent arrays should be laid out horizontally, a non-array element in found on the page, or the end
of the menu page is reached.

Figure 13 shows an INT16_ARRAY parameter named "Channel", provides a vertical layout and row
labels for 7 array parameters named “Channel Update”, “Source”, “Vertical Channel”, “Delay Array
(ms)”, “Gain (dB)”, “Invert”, and “Destination”.

Channel Channel Update Source Vertical Channel Delay Array (ms) Gain (dB) Destination

Chan01 o o AES4 Right e 994 10.0

Chan 01 oo AES? Right Chan 02

Chan 01

Chan 01 AES4 Right Chan 03

EE =D om0 AES1 Right Chan 04

Figure 13 - INT6_ARRAY vertical layout example.

WIDGET_ARRAY_HEADER_HORIZONTAL (16)

The WIDGET ARRAY HEADER HORIZONTAL is used to create a header over a horizontal array.
It will also will end a block of vertical array elements. Each element in the header parameter will be
displayed as a column header.

Figure 14 shows an INT16_ARRAY parameter named "Channel" providing a horizontal layout and

DashBoard CustomPanel Development Guide ogScript Reference o 27

column labels for 7 array parameters named “Horizontal Channel”, “Source”, “Delay Array (ms)”,
“Gain (dB)”, “Invert”, “Destination” and “Transition”.

#iE Chan 01 Chan 01 Chan 01 Chan 01

Honzontal Channel Chan 01 Chan 02 Chan 03 Chan 04

Source AES1 Right AES2 Right AES3 Right AESA Right

Delay Array (ms)

Transition

Figure 14 - INT16_ARRAY horizontal layout example.

INT16/INT32 Parameters with Choice Constraints

The following hints apply to INT16, INT16_ ARRAY, INT32, and INT32_ARRAY Parameters
provided that they use a constraint of type CHOICE or EXTENDED_ CHOICE. There are some
restrictions for certain hints (checkboxes and toggle buttons are only valid for 2-choice constraints,
buttons with and without prompts are only valid for single-choice and 2-choice constraints). If a widget
hint is used incorrectly, the combo box will be substituted in place of the chosen widget. Display
examples are provided below.

Widget Name Value | Description

WIDGET_COMBO_BOX 7 Displays a dropdown list of selectable options. This is
the default widget used for any choice parameter
with more than 1 choice provided.

WIDGET_CHECKBOX 8 Displays a checkbox. Checkboxes only apply to
parameters with exactly 2 choices. The first choice is
considered false or unchecked; the second choice is
considered true or checked.

WIDGET_RADIO_HORIZONTAL 9 Displays a radio button for each integer value option.
The radio buttons are placed beside each other
horizontally on the page.

WIDGET_RADIO_VERTICAL 10 Displays a radio button for each integer value option.
The radio buttons are placed in a vertical column.
WIDGET_BUTTON_PROMPT 11 Provides a button with confirmation prompt.

Whenever the button is pressed and confirmed, the
parameter value is sent to the device.

WIDGET_BUTTON_NO_PROMPT 12 Provides a button without confirmation prompt.
Whenever the button is pressed, the parameter value
is sent to the device.

WIDGET_BUTTON_TOGGLE 13 Displays a toggle buttons. This hint applies only to
parameters with exactly 2 choices. The first choice is
shown when the button is up (not pressed);

the second choice is shown when the button is down

(pressed).

WIDGET_FILE_DOWNLOAD 18 Displays a file download widget. This hint requires an
external object with an OID matching the value of the
parameter.

WIDGET_MENU_POPUP 20 Each value in the parameter must refer to the menu

ID of an OGP Menu. The choice corresponding to the
parameter value has its name used as the value
displayed on a button. When the button is pressed,
the menu with an OID corresponding to the

28 o ogScript Reference DashBoard CustomPanel Development Guide

Widget Name Value | Description

parameter value is displayed in a popup menu.

WIDGET_RADIO_TOGGLE_BUTTONS 22 Displays a toggle button for each integer value
option. The toggle buttons are placed beside each
other horizontally on the page.

WIDGET_TREE 31 Displays a tree control. Tree elements are defined by
the elements of the choice constraint. The tree
hierarchy is defined by “-” characters at the
beginning of the choice. See detailed description
below for more information.

WIDGET_TREE_POPUP 32 Displays the tree (same definition as
WIDGET_TREE) in a combo box control. See
detailed description below for more information.

WIDGET_COMBO_BOX (7)

Display a dropdown list of selectable options. This is the default widget used for any choice parameter
with more than 1 choice provided.

Character E|;art|

Bart

cted Qutput
o P Lisa
adio Choice Homer

Marge

Figure 15 - WIDGET_COMBO hint

WIDGET_CHECKBOX (8)

Displays a checkbox. Checkboxes only apply to integer choice constraints with exactly 2 choices.
The first choice is considered false or unchecked; the second choice is considered true or checked.

Enable Upload |

Figure 16 - WIDGET_CHECKBOX hint.

DashBoard CustomPanel Development Guide ogScript Reference o 29

WIDGET_RADIO_HORIZONTAL (9)

Displays a radio button for each element in the choice constraint. The radio buttons are placed beside
each other horizontally on the page.

Radio Choice o Bart . Lisa . Homer . Marge

Figure 17 - WIDGET_RADIO_HORIZONTAL hint

WIDGET_RADIO_VERTICAL (10)

Displays a radio button for each element in the choice constraint. The radio buttons are placed in a
column vertically on the page.

Lisa
Homer

Marge

Figure 18 - WIDGET_RADIO_VERTICAL hint

WIDGET_BUTTON_NO_PROMPT (12)

This hint can only be used for a parameter having a choice constraint with one or two choices. It
displays a button with the name of the first choice as the button label. When the button is pressed, a
parameter set request is sent to the device immediately (without user confirmation). If the parameter has
only one choice, the value of that choice is sent to the device. If the parameter has two choices, the
value of the second choice is sent. The device should normally reset the parameter value to the first
choice when it acknowledges the set request.

Figure 19 shows a single-choice parameter named "Factory Defaults" with a hint of
WIDGET BUTTON NO PROMPT and a value of "Reset". There will be no confirmation dialog.

Factory Defaults EESEt

Figure 19 - WIDGET_BUTTON_NO_PROMPT hint.

WIDGET_BUTTON_PROMPT (11)

This hint can only be used for a parameter having a choice constraint with one or two choices. It is the
default widget used when only one choice is available. It displays a button with the name of the first
choice as the button label. When the button is pressed, a confirmation dialog is displayed before sending
anything to the device. The dialog uses the format: “[Button Label] [Parameter Name]?”” So a choice
called “Reset” with a parameter named “Parameter Values” would display “Reset Parameter Values?”
as the prompt. When the button is pressed and confirmed, a parameter set request is sent to the device. If
the parameter has only one choice, the value of that choice is sent to the device. If the parameter has two
choices, the value of the second choice is sent. The device should normally reset the parameter value to
the first choice when it acknowledges the set request. If a two-state button is desired, see

WIDGET BUTTON_TOGGLE (13) on page 31.

Figure 20 shows single-choice parameter named "Factory Defaults" with a hint of
WIDGET BUTTON_PROMPT and a value of "Reset".

30 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Factory Defaults ~ Reset

Confirm h:4

Reset Factory Defaults?

Yes No

Figure 20 - WIDGET_BUTTON_PROMPT hint

Note Two choices are necessary for using WIDGET_BUTTON_PROMPT and
WIDGET_BUTTON_NO_PROMPT with array parameters.

WIDGET_BUTTON_TOGGLE (13)

Toggle buttons work exactly the same as a checkbox. The toggle button applies only to integer
constraints with exactly two choices. The name of the first choice is shown when the button is up (not
pressed) and the name of the second choice is shown when the button is down (pressed).

Figure 21 shows a two-choice integer parameter named "Bold Toggler" with choice 1 set to "First
Value" and choice 2 set to "Second value" The figure shows the button’s display for both before and

after a button toggle.

Bold Toggler Off

Beold Toggler

Figure 21 - WIDGET_BUTTON_TOGGLE hint

Properties
Property Type Default Description
w.instantoff Boolean false Parameter's value is changed to the "on"

state when the button is clicked, and back
to the "off" state as soon the mouse is
released. The button is only "on" while it is
depressed.

WIDGET_FILE_DOWNLOAD (18)

This hint requires that an external object with an OID matching the value of the parameter be available.
For each choice in the parameter’s choice constraint, the choice value represents an external object’s
OID and the value represents the filename to display. When the ‘save’ button is pressed, DashBoard
requests the external object with the given OID and save the external object’s bytes to the
filename/location defined by the user (default filename is defined in the choice constraint).

DashBoard CustomPanel Development Guide ogScript Reference o 31

[saveFile X

Look in: % output

Name

Downloads

'T 8.8_Spinnergrid 14 kB
.

Button .grid 2.2 kB
JoySticks.gri 2.0kB

main_software.grid 775 B

File Name: main_s

Files of Type: All Files

Type

File Folder

GRID File
GRID File
GRID File

GRID File

Date Modified
6-Mar-2020 4:37:3

Save Cancel

Figure 22 - WIDGET_FILE_DOWNLOAD hint

WIDGET _MENU_POPUP (20)

This hint requires that an OID Menu with a menu ID matching the value of the parameter be available.
For each choice in the parameter’s choice constraint, the choice value represents a menu’s ID and the
choice name represents the label to display on the button. When the button is pressed, DashBoard
displays the menu with the given ID as a popup menu.

S Enabled

>0 Enabled

Row 13 w
Row E'E W
Row EIE v
Row -'13 w

Tree

Popup OGLML Menu #270

: 5
Row 1 w
Row E' W
Row EI w
Row -'1 w

Row 1|" w
Row -'1!:: w

Figure 23 - WIDGET_MENU_POPUP hint

32 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

WIDGET_RADIO_TOGGLE_BUTTONS (22)

Displays a radio toggle button for each integer value option. The radio toggle buttons are placed beside
each other horizontally on the page.

BLACK Router 2 Router 3 Router 4 Router & Router 6 LOGO 1 LOGO 2 RTR EXTRA 1

Figure 24 - WIDGET_RADIO_TOGGLE_BUTTONS hint

WIDGET_TREE (31)

Displays a tree control. Tree elements are defined by the elements of the choice constraint. The tree
hierarchy is defined by “-” characters at the beginning of the choice. When an element in the tree is
selected, the parameter value is set to the value of the selected choice. All other expand/collapse
changes are local only to the DashBoard on which the change occurred.

“+” indicates that an element should be expanded by default.

= Element 1
n Element 1-1...
* Element 1-2
Element 1-2-1
Element 1 - 2

Tree

i Bob!
B Element 3
B Element 4

Figure 25 - WIDGET_TREE hint

The tree pictured above is defined by the following list of choices:

—_—

Element 1<i:>
+Element 1 - 1<i-u:http://127.0.0.1/icons/small/sound2.png>
+Element 1 - 2<i:>
+-Element 1 - 2 - 1<i:>
+-Element 1 - 2 - 2<i:>
+-Element 1 - 2 - 3<i:>
Element 2
+-Element 2 - 1
+-Element 2 - 2

. +-Element2 -2 -1

. +-Element2 -2 -2

12. +-Element2-2-3

13. +--Bob!

14. Element 3

15. Element 4

e A i

—_
—_ O

WIDGET_TREE_POPUP (32)

Displays the tree (same definition as WIDGET _TREE) in a combo box control. This functions the same
as WIDGET_TREE, with the difference that only the currently selected item shows by default. When

DashBoard CustomPanel Development Guide ogScript Reference ¢ 33

the user clicks on the value, a popup appears, allowing selection to be made.

Tree | Element 1 i

Element 1

-

n Element 1 -1

= Element 1-2

Element

Element 1 -2

Figure 26 - WIDGET_TREE_POPUP hint

Hints for Numeric Parameters with Other Constraints

The following hints are for INT16, INT16_ARRAY, INT32, INT32 ARRAY, FLOAT, and
FLOAT_ARRAY parameters and arrays with constraints other than choices. Most hints have specific
restrictions. Details for each hint are provided below.

Widget Name Value | Description
WIDGET_SLIDER_HORIZONTAL 3 Displays a horizontal slider control. This is the
default control for range-bounded integer and
floating point parameters when they are not
used in an array
WIDGET_SLIDER_VERTICAL 4 Displays a vertical slider control. This is the
default control for range-bounded integer and
floating point array parameters
WIDGET_SPINNER 5 Displays a spinner (entry field plus up/down
arrows). This is the default for unbounded INT16
parameters. This cannot be used for unbounded
FLOAT or INT32 parameters.
WIDGET_TEXTBOX 6 Displays a numeric entry field. This is the default
for unbounded FLOAT and INT32 parameters.
WIDGET_IP_ADDRESS 14 Displays an IP Address entry field.
Only works with unconstrained INT32
parameters.
WIDGET_PROGRESS_BAR 17 Displays a read-only progress bar control.
WIDGET_AUDIO_METER 19 Displays a read-only audio level meter control
with green, yellow, and red markers.
WIDGET_TIMER 21 Displays a label that counts down from the
parameter value to 0 when double-clicked.
WIDGET_COLOR_CHOOSER 23 Put a colour chooser as an element in the UI.
Changes made to the colour chooser are
instantly sent to the device.
Color values are INT32 values in ARGB format.
WIDGET_SLIDER_HORIZONTAL_NO_LABEL 24 Displays a horizontal slider control with no label
WIDGET_SLIDER VERTICAL _NO_LABEL 25 Displays a vertical slider control with no label
WIDGET_VERTICAL_FADER 26 Displays a vertical slider that looks like a fader
bar
WIDGET_TOUCH_WHEEL 27 Displays a touch wheel control
WIDGET_HEX_SPINNER 28 Displays a spinner (entry field plus up/down

arrows). Display the value in Base 16.

34 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

Widget Name

Value

Description

WIDGET_ABSOLUTE_POSITIONER

29

Provides a 2-axis absolute positioning element.
When used as an INT16, the 8 LSBs represent
the X coordinate and the 8 MSBs represent the
Y coordinate. When used as an INT32, the 16
LSBs represent the X coordinate and the 16
MSBs represent the Y coordinate.

A crosshair in a box can be dragged to the
absolute position of the value in 2-D space.

WIDGET_ABSOLUTE_CROSSHAIR

30

Position a value in 2-D space. When used as an
INT16, the 8 LSBs represent the X coordinate
and the 8 MSBs represent the Y coordinate.
When used as an INT32, the 16 LSBs represent
the X coordinate and the 16 MSBs represent the
Y coordinate.

A crosshair that snaps to the center when
released makes changes in +/- X, +/- Y relative
to the offset from the center.

WIDGET_JOY_STICK

34

Position a value in 2-D space. When used as an
INT16, the 8 LSBs represent the X coordinate
and the 8 MSBs represent the Y coordinate.
When used as an INT32, the 16 LSBs represent
the X coordinate and the 16 MSBs represent the
Y coordinate.

Displays a joystick and modifies the X, Y values
as the joystick is dragged north, south, east, and
west of the center.

WIDGET_COLOR_CHOOSER_POPUP

33

Display a combo box control showing the
‘current’ colour. On click, show the colour
chooser. If “Live” is togged on, update the
parameter value immediately. If “Live” is toggled
off, update the parameter value when the popup
is closed.

Color values are INT32 values in ARGB format.

WIDGET_GRAPH

256

Displays a plot graph of a parameter’s value
over time.

WIDGET_EQ_GRAPH

46

Displays an EQ Graph that provides a visual
representation of how bands effect frequencies
across a given range.

WIDGET_SLIDER_HORIZONTAL (3)

Horizontal sliders are the default widgets used for range-bounded integer and floating point numbers
when they are not used in an array. Sliders are not available for unbounded (null constraint) parameters.

Figure 27 shows an integer parameter with a range constraint bounded by (0, 200) and a

WIDGET SLIDER HORIZONTAL hint.

Video gain

Figure 27 - WIDGET_SLIDER_HORIZONTAL hint

WIDGET_SLIDER_VERTICAL (4)

Vertical sliders are the default widgets used for range-bounded integer and floating point numbers when
they are used in an array. Sliders are not available for unbounded (null constraint) parameters.

The following is an integer parameter with a range constraint bounded by (0, 994) and a

WIDGET SLIDER VERTICAL hint.

DashBoard CustomPanel Development Guide

ogScript Reference o 35

994 3

Figure 28 - WIDGET_SLIDER_VERTICAL hint

WIDGET_SLIDER_HORIZONTAL_NO_LABEL (24)

Figure 29 - WIDGET_SLIDER_HORIZONTAL_NO_LABEL hint

WIDGET_SLIDER_VERTICAL_NO_LABEL (25)

Figure 30 - WIDGET_SLIDER_HORIZONTAL_NO_LABEL hint

WIDGET_VERTICAL_FADER (26)

This hint specifies that the number shall be displayed as a vertical fader bar. The user can adjust the
level by dragging the handle of the fader up or down.

Figure 31 - WIDGET_VERTICAL_FADER hint

WIDGET_TOUCH_WHEEL (27)

This hint specifies that the number shall be displayed as a touch wheel (or circular slider). The user
grabs the dot on the circle and drags clockwise to increment the value and counter clockwise to
decrement it. The touch wheel can be configured to take a specified number of revolutions to go from
the minimum value to the maximum value and can also be configured to roll over to the minimum or

maximum when the limits of the range are reached.

36 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Figure 32 - WIDGET_TOUCH_WHEEL hint

WIDGET_PROGRESS_BAR (17)

This hint specifies that the number shall be displayed as a horizontal progress bar. For a range-bounded
parameter, the progress bar displays the specified range (similar to a slider). For an unbounded
parameter, the progress bar displays from 0 to 100%.

67

Figure 33 - WIDGET_PROGRESS_BAR hint

WIDGET_SPINNER (5)

Spinner widgets provide a compact way to navigate a bounded integer or float parameter. Spinner
widgets are the default widgets used for unbounded int16 parameters. The spinner widget cannot be
used with an unbounded floating point or int32 parameter.

Figure 34 - WIDGET_SPINNER hint

Notes The range of the parameter: abs(max — min) x precision cannot exceed the maximum
size of a signed integer for sliders and spinners.

To aid in touch screen environments, clicking and dragging a spinner up/down will
increase/decrease its value.

Properties
Property Type Default Description
w.keyboard Integer disabled — Disables the soft keyboard or

number pad to enter characters when
using a touchscreen.

WIDGET_TEXTBOX (6)

This hint specifies that a simple text entry field should be used for a number. The information entered
into the text field is forced to conform to the constraints provided by the parameter. This is the default
widget used for unbounded floating point parameters.

Text 12345

Figure 35 - WIDGET_TEXTBOX hint

WIDGET_IP_ADDRESS (14)
Displays an IPv4 Address format for a 32-bit integer. Only works with unbounded INT32 parameters.

IP address 172.16.7.230

DashBoard CustomPanel Development Guide ogScript Reference o 37

Figure 36 - WIDGET_IP_ADDRESS hint

WIDGET_AUDIO_METER (19)

This hint specifies that the number shall be displayed as a vertical audio meter. The number of
red/yellow/green segments is fixed.

Figure 37 - WIDGET_AUDIO_METER hint

WIDGET_TIMER (21)

This hint applies only to integer parameters with RANGE _STEP_CONSTRAINT constraints. The
parameter is displayed as a label and counts down if minVal < 0 or up if minVal >= 0. Negative
numbers are not displayed. The step size is used to specify the number of ticks-per-second to use and
must be a number between 1 and 1000.

When the maximum or minimum values are reached, the timer will stop counting.

To initialize the counter to a specific value but not have it start counting:

e If the minimum value is negative and the parameter value is positive, the timer will display
absolute(min) —value but will not count.

e If the minimum value is positive and the parameter value is negative, the timer will display
absolute(value) but will not count.

38 e ogScript Reference DashBoard CustomPanel Development Guide

The timer can be reset or synchronized by sending a REPORT PARAM message with the new
parameter value (typically “17).

Examples:

e min=-600, max=0, step=1 (count from 10:00 to 0:00 showing each second).

e min=0, max=600, step=1 (count from 0:00 to 10:00 showing each second)

¢ min=0, max=1000,step=1000 (count from 0:00:000 to 0:01:000 showing each millisecond)

Figure 29 shows an INT 32 parameter with a WIDGET TIMER hint, a precision of 1000, and a value

of 13794088.

Figure 38 - WIDGET_TIMER hint

WIDGET_HEX_SPINNER (28)
Displays a spinner (entry field plus up/down arrows). Display the value in Base 16.

e

Hex Int32 0x7FFFFFFF o [Hex Int16 0x7FFF %

Figure 39 - WIDGET_HEX_SPINNER hint

Notes Due to the lack of unsigned data types in OGP, hex spinners do not function properly in
the following circumstances:
- An INT16 parameter with any values in the range of 0x8000 — OxFFFF
- An INT32 parameter with any values in the range of 0x80000000 — OxFFFFFFFF
- To allow a spinner to function in the range from 0x0000 — OxFFFF, it is recommended
that an INT32 parameter be used.

WIDGET_ABSOLUTE_POSITIONER (29)

Position a value in 2-D space.
e When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y
coordinate.

e When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y
coordinate.

A crosshair in a box is dragged to the absolute position of the value in 2-D space. The ratio of width to
height is the ratio of xmax-xmin to ymax-ymin with the assumption that the screen pixels are square.
Values are updated and sent to the device as the crosshair is dragged.

Absolute

Figure 40 - WIDGET_ABSOLUTE_POSITIONER hint

WIDGET_CROSSHAIR (30)

Position a value in 2-D space.
e When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y
coordinate.

e When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y
coordinate.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 39

A crosshair that snaps to the center when released makes changes in +/- X, +/- Y relative to the offset
from the center. The ratio of width to height is the ratio of xmax-xmin to ymax-ymin. Values are
updated and sent to the device as the crosshair is dragged.

Crosshair

Figure 41 - WIDGET_CROSSHAIR hint

WIDGET_JOY_STICK(34)

Position a value in 2-D space.

e When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y
coordinate.

e When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y
coordinate.

Displays a joystick and modifies the X,Y values as the joystick is dragged north, south, east, and west of

the center.

Figure 42 - WIDGET_JOY_STICK hint

WIDGET_COLOR_CHOOSER(23)

Display a color chooser as an element in the UI. Changes made to the color chooser are immediately
sent to the device. Note that the color chooser provides control for Hue, Saturation, Lightness, but color

values are INT32 values in ARGB format.

o Hue
. Saturation
. Lightness

Transparency I]ﬁ

Figure 43 - WIDGET_COLOR_CHOOSER hint

WIDGET_COLOR_CHOOSER_POPUP(33)

Display a combo box control showing the ‘current’ color. On click, show the color chooser.

e If“Live” is togged on, update the parameter value immediately.
e If“Live” is toggled off, update the parameter value when the popup is closed.

40 o ogScript Reference DashBoard CustomPanel Development Guide

Color values are INT32 values in ARGB format.

o Hue
. Saturation
. Lightness

Transparency]"E

Figure 44 - WIDGET_COLOR_CHOOSER hint

DashBoard CustomPanel Development Guide ogScript Reference o 41

WIDGET_GRAPH (256)

The graph widget provides a plot graph which tracks the value of a numeric parameter over time.

Time
— Parameter Value

Figure 45 - WIDGET_GRAPH hint

A parameter utilizing a WIDGET GRAPH widget may also specify additional configuration parameters
in the config object of the parameter.

Properties

Property Type Default Description

w.time Integer Sets the timescale of the plot. If set to O,
the timescale will adapt to display entire
change history.

w.grid String Sets the color of the gridlines

w.plotfg String Sets the color of the plot foreground

w.plotbg String Sets the color of the plot background

w.hidelegend Boolean true — Legend is not shown
false — Legend is shown

w.hidex Boolean true — X-axis scale is not shown
false — X-axis scale is shown

w.hidey Boolean true — Y-axis scale is not shown
false — Y-axis scale is shown

w.autoadvance Booelan true — graph will auto-update every 1

second
false — graph will only update upon
parameter change.

WIDGET_EQ_GRAPH (46)

The EQ graph widget provides a a visual representation of how bands effect frequencies across a given
range. This advanced widget allows you to make an EQ graph, using parameters from any device that
talks to DashBoard. The EQ graph creates a graphical representation of parametric equalization. For

42 o ogScript Reference DashBoard CustomPanel Development Guide

example, you can add a Ross Video Carbonite switcher to DashBoard as a device, and then measure
bands from the Carbonite’s parameters. The graphic below shows an EQ graph that is pulling
parameters from a Carbonite switcher, and the equalizer settings have been mapped to slider controls to
make adjustments from the DashBoard CustomPanel.

Each band has an associated frequency, range, and Q value, if required.

The filter that each band is applying can be specified in the configuration overrides. If the filter is not
defined, then it will default to a peak filter.

Equalizer

100 200 500

Freguency

Figure 46 - WIDGET_EQ_GRAPH hint

A parameter utilizing a WIDGET EQ_GRAPH widget must also specify additional configuration
parameters in the config object of the parameter. For more details see the DashBoard User Guide.

Properties
Property Type Default Description

w.linecolor #[RGB Value] Sets the color of the graph point to point
line.

w filters [String Array] Sets the filter for each band, where the
possible values are lowshelf, peak or
highshelf. One filter per point.

w. pointnames [String Array] Sets the name on each graph point, for
example:

w.colorselected #[RGB Value 1,2,3,4

Array]
w.colorunselected #[RGB Value Sets the color for each point when it's
Array] selected. For example:

w.linethickness [Integer] #ffd966,#c27ba0,#6d9eeb,#93c47d

w.graphfontsize [Integer] Sets the color for each point when it's not
selected. For example:

w.pointfontsize [Integer] #ffd966,#c27ba0,#6d9eeb,#93c47d

w.pointwidth [Integer] Sets the thickness of the graph point to
point line.

w.pointheight [Integer] Sets the font size of the text used on the
graph title, axis labels and axis entries.

w.xaxis [String] Sets the font size for the point names.

w.yaxis [String] Sets the width of the points.
w.xaxisentries [String Array] Sets the height of the points.

DashBoard CustomPanel Development Guide ogScript Reference o 43

Property Type Default Description

w.yaxisentries [String Array] Sets the x axis label.

w.pointamount [Integer] Sets the y axis label.

w.frequencyshift [Integer] Sets the line marks on the x axis. For
example:
20,50,100,200,500,1000,2000,5000,10000

w.title [String] Sets the line marks on the y axis. For
example:

Hints for String Parameters

The following widget hints may be used for String parameters (in addition to the separators and layout
hints defined above). The last two hints apply only to a String parameter using the reserved objectID

O0xFFOI.
Widget Name Value Description

WIDGET_TEXT_ENTRY 3 Displays a normal text entry field. This is the
default for editable String parameters.

WIDGET_PASSWORD 4 Displays an entry field for passwords (text
entered in this field is obscured).

WIDGET_COMBO_ENTRY 11 Displays an entry field together with a
dropdown list of selectable items. This is
applicable only with the STRING_CHOICE
constraint.

WIDGET_COLORED DOT 12 Displays a colored icon. The icon color is
specified using a tag in the text string.

WIDGET_RICH_LABEL 13 Displays a read-only multi-line text field with
HTML formatting.

WIDGET_MULTILINE_TEXT_ENTRY 14 Displays a multi-line text editor.

WIDGET_NAME_OVERRIDE_APPEND 0 Special hint only for objectID OxFF01 —

causes this string to be appended to the
displayed product name

WIDGET_NAME_OVERRIDE_REPLACE 1 Special hint only for objectID OxFF01 —
causes this string to replace the product
name to be displayed

WIDGET_TEXT_ENTRY (3)

This is a text entry field used to enter String values. This is the default widget used with editable String
parameters. It is very important to correctly set the length of the String with this widget as the length
affects the width of the text field. In DashBoard the value is sent to the device when the user hits ‘Enter’
or changes focus to a different control on the screen.

Figure 47 - WIDGET_TEXT_ENTRY hint

Properties

44 o ogScript Reference DashBoard CustomPanel Development Guide

Property Type Default Description

disabled — Disables the soft keyboard or
number pad to enter characters when
using a touchscreen.

w.keyboard Integer

WIDGET_PASSWORD (4)

This is a text entry field used to enter passwords. When the device receives a set message for a
parameter using this hint, a device could send an empty string back to the device to clear the password
field. Text in the password field is sent when it has changed from the value reported from the device and

the user hits “Enter” or moves focus to another control.

Figure 48 - WIDGET_PASSWORD hint

DashBoard CustomPanel Development Guide ogScript Reference o 45

WIDGET_COMBO_ENTRY (11)

This displays a text entry field along with a dropdown list. This option is available only for String
parameters having a STRING CHOICE constraint. The user may select an option from the dropdown
list, or can type any value in the entry field. The text is sent to the device when a dropdown item is
selected, when the user presses “Enter” or moves the focus after typing a value.

oG RVETG I Custom Name
Zeus Test Card
C

Card Name [NEGRIN

Menu Login

ad Progress Matilda

Figure 49 - WIDGET_COMBO_ENTRY hint, selecting from the dropdown list

WIDGET_COLORED_DOT (12)

This displays a colored icon. This should not be confused with Alarm parameters which have a similar
appearance. The tag specifies the 24-bit RGB color index of the icon in hex, in the format
<#RRGGBB>. If the string does not contain a valid color tag, the icon is drawn but not filled (i.e.

background shows through).

Figure 50 - WIDGET_ICON_DISPLAY hint, and value “<#3F3FFF>"

WIDGET_RICH_LABEL (13)

This displays a read-only multi-line text field, and formats the text according to the HTML formatting
tags embedded in the text. Total string length including tags is limited to 250 bytes. The display uses
html support within the java display object, so the exact appearance of the label may vary depending on
operating system and java version.

Selected Rundown

& MNews

=& Daily Comment

Continue Local Programming

Figure 51 - WIDGET_RICH_LABEL hint

WIDGET_MULTILINE_TEXT_ENTRY (14)

This displays a multi-line text entry field. The amount of data a user can input into the field is limited by
the maximum length specified by the parameter. The size of the field is the same regardless of the
maximum number of bytes the user is allowed to enter. If the parameter’s value spans more lines than
the number of rows represented by the text field, a vertical scrollbar is shown to allow the user to scroll.
Text will be wrapped to avoid horizontal scrollbars.

46 e ogScript Reference DashBoard CustomPanel Development Guide

This is multi-line text:

Shopping List:
-Strawberries
-Raspberries

-Blueberries
-Apples
-Bananas
-Grapes
-Peaches

Figure 52 - WIDGET_MULTILINE_TEXT_ENTRY hint

WIDGET_NAME_OVERRIDE_APPEND (0)

This is a special hint ONLY FOR OID 255.1 (0xFFO1). This causes the value of the String parameter
with OID 255.1 to be appended to the end of the device name in DashBoard.

Figure 53 shows the result of setting parameter 255.1 to " (XPF)" with a
WIDGET_NAME_OVERRIDE_APPEND hint.

“TF % - %[E
b Demo Frame - MUX-8252-B (XPF)
& Demo Frame Card state: @ Signal Status No Input
Derma Frame

- @ Slat 5: MUX-B252-6 (XPF) Connection: @ ONLINE

Product Hardware Signal

[

Name Override | (GFF)

Product |MU)-6253-5

fo 0 | oy 54
Figure 53 - WIDGET_NAME_OVERRIDE_APPEND hint

WIDGET_NAME_OVERRIDE_REPLACE (1)

This is a special hint ONLY FOR OID 255.1 (0xFFO1). This causes the value of the String parameter
with OID 255.1 to be displayed as the device name instead of the product name (OID 0x0105) in
DashBoard. This is the only supported method for changing a product name dynamically. Devices
should never modify their base product name (OID 0x0105); DashBoard, DataSafe, and User Rights all
depend on the base product name remaining fixed. Change of the product name is assumed to mean that
the user has physically removed a card, and has replaced it with a different type of card.

Figure 54 shows the result of setting parameter 255.1 to "My Device Name" with a
WIDGET_NAME_OVERRIDE_REPLACE hint.

My Device Name

E;E:BI Derma Frame
5§ Dema Frame
B8 Dema Frame
‘. Slak &: My Device Name

Card state; @ Signal Status No Input

Connection: © ONLINE

Hardwarp Sinnal
Product

Name Override [My Device Marme

Product |MU)-6252-8

Figure 54 - WIDGET_NAME_OVERRIDE_REPLACE hint

DashBoard CustomPanel Development Guide ogScript Reference o 47

Hints for STRUCT Types

Struct parameters may utilize the following widget types:

WIDGET_TABLE (36)

The table widget displays a line for each element in a STRUCT _ARRAY. Column headings are
specified by the name property of each struct element. Each element of the struct is given a column in
the table.

Clip Mame Director Original Air Date Author
inter is Coming [Tim Van Patten \April 24, 2011 David Benoiff & D.B. Weiss
he Kingsroad Brian Kirk April 24, 2011 David Benoiff & D.B. Weiss
Lord Snow Brian Kirk May 1, 2011 David Benoiff & D.B. Weiss
A Golden Crown Daniel Minahan May 22, 2011 David Benioff & D. B. Weiss

Figure 55 - WIDGET_TABLE hint

A parameter using a WIDGET TABLE widget may also specify additional configuration parameters in
the config object of the parameter.

48 o ogScript Reference DashBoard CustomPanel Development Guide

Properties

Property Type Default Description

w.localselection Boolean false true — edits in the table row do not
update backing parameter; changes in the
backing parameter do not update the
selected row(s).
false — backing parameter and table row
changes track with each other.

w.scrollselection Boolean true true — auto scroll to the selected row
false —do not scroll to the selected row

w.reorder Boolean false true — allow drag to reorder values
false — do not allow drag to reorder
values

w.rowstyleparam String none OID of string array parameter providing

style information (background, foreground,
font, font size, etc.) for each row.

w.selectionparam String none OID of integer parameter that will be
populated with the index of a selected row.

w.rowaccessparam String none OID of integer array parameter which
determines read-only access for each row.
(0 = read-only, 1 = read-write). If not
specified, all rows are read-write.

w.rowheight Number automatic Sets the row height. Specified in pixels

w.colwidth.n Number automatic Sets the width of the nt" column. First column
index is 0.

w.colminwidth.n Number automatic Sets the minimum width of the n column.

First column index is 0.

w.hscroll Boolean false true — show horizontal scrollbar
false — do not show horizontal scrollbar

w.alwaysscroll Boolean false true — vertical scrollbar always shown

false — vertical scrollbar only shown only
when required

w.hgrid Boolean true true — display horizontal grid lines
false — do not display horizontal grid
lines

w.vgrid Boolean true true — display vertical grid lines

false — do not display vertical grid lines

DashBoard CustomPanel Development Guide ogScript Reference o 49

Data Types

OGP supports a number of parameter data types as summarized in the table below. For OGP messaging,
the OGP Type value is a numerical index to indicate the parameter’s data type. For JSON messaging,
the Data Type Name is used to indicate the parameter type.

Data Type Name | OGP | Data Size | Description
type (bytes)

INT16 2 2 16-bit signed integer (INT16)
INT32 4 4 32-bit signed integer (INT32)
FLOAT32 6 4 32-bit IEEE single-precision floating point number
STRING 7 variable null-terminated UTF-8 string

data_size = maximum permitted number of
character data bytes
INT16_ARRAY 12 2*len array of 16-bit integers

data_size = 2 * number of elements
(total length of the array in bytes)
INT32_ARRAY 14 4*len array of 32-bit integers

data_size = 4 * number of elements
(total length of the array in bytes)
FLOAT32_ARRAY 16 4*len array of 32-bit floats

data_size = 4 * number of elements
(total length of the array in bytes)

STRING_ARRAY 17 variable null-terminated UTF-8 strings
precision = maximum string length for any element
in the array
data_size = maximum number of character data
bytes

STRUCT n/a variable User-defined data structure. (DashBoard 7.0+)

STRUCT_ARRAY n/a variable Array of User-defined data structures. (DashBoard
7.0+)

BINARY_PARAM 18 variable array of binary data of type unknown to
DashBoard.

Endianness

All numeric data encoding within OGP is in Big Endian format. Therefore, highest order bytes of multi-
byte numeric values are transmitted first.

Number Encoding

Signed integer data types are binary encoded 2’s complement numbers. Valid ranges for integer types

arc:
Response Min Max
UINTS8 0 255
UINT16 0 65535
INT16 -32,768 32,767
INT32 -2,147,483,648 2,147,483,647

Floating point data types are encoded as 32-bit IEEE (single-precision) floating point numbers. This
encoding is broken down as:

e Sign: 1 bit
e Exponent: 8 bits; Range -126 to +127

50 ¢ ogScript Reference DashBoard CustomPanel Development Guide

e Base: 23 bits

e Data size is the number of bytes occupied by the value.

String Encoding

All string data encoding within OGP is in UTF-8 format. Strings are preceded by a length count byte,
and are followed by a null terminating byte.

External Data Objects

To support more complex interaction with the device than is possible with parameters, DashBoard
includes a set of general data objects called External Objects. Each object is identified by a 2-byte
objectID (like parameters), and contains a type identifier and object-specific data. External object OIDs
can overlap with parameter OIDs. The range of OIDs from 0xFEO0O to OXFFFF is reserved for future
use.

External objects include an object type to indicate the type of data they encapsulate. The supported
object types are:

objtype | Description
1 Constraint
2 Data File
3 Image
4 OGLML or XML document
5 File

Constraint

Parameter constraint information can be taken outside of the parameter descriptor and moved into an
external object. This is useful, for example if there is a choice constraint with a large number of options,
or a common constraint is to be applied to multiple parameters. The constraint field in the parameter
descriptor simply refers to an external object ID.

Any constraint type can be externalized except the external constraint type itself. An external constraint
object can be shared by multiple parameters (the external object will be requested only once for all
parameters which share the constraint). The object type of the external constraint must be 1, and the
object data must be encoded in the same format as used for an embedded constraint.

An external object that is not object type 0x0001 will be treated as a NULL constraint (unconstrained).
Just like constraints declared in the parameter descriptor, external constraints must have the same data
type as the referring parameter.

Data File

Arbitrary binary data can be sent from the device to DashBoard as a file download. These files are
requested by supplying an integer parameter with a WIDGET FILE DOWNLOAD widget hint and a
choice constraint. The numeric value of the parameter must match the OID of an external object
containing the file data to download. The string value of the choice constraint is used to supply a file
name for the download. To upload the file data back to the device, the data must use the standard
openGear file header information defined in the section.

Image

Images may be encapsulated within an External Object to be displayed in the device editor (via
OGLML) or to be used to override its icon in DashBoard. The icon may include a status indicator or
DashBoard can overlay a status indicator over the provided icon. Icons can be provided either by a URL

DashBoard CustomPanel Development Guide ogScript Reference o 51

or embedded directly in the external object.

Images must be formatted as JPEG, GIF, or PNG. Icons must be 16x16.

OGLML Descriptor or Index XML

DashBoard includes powerful feature for defining the on-screen layout of a device’s configuration page
in DashBoard. These configurations are defined in an OGLML Document. These documents can be
retrieved from a web server or sent to DashBoard in an external object.

File
OGLML or image assets may be directly embedded into CustomPanels using an External Object. To

directly embed graphics into a CustomPanel, you can use the attributes encoding and zip.

This object type can also be used to reference a non-embedded asset via the URL attribute when using
an OGLML tag.

OGLML Documents

This section includes the following topics:
¢ Containers
e Contexts
e OGLML Document Structure
e OGLML URLs

e OGLML Descriptor Format

Containers

All UI elements must be placed within a container. The container dictates how UI components are laid
out within the DashBoard UI. There are several container types which provide different options on
component layout. Layout containers may be nested.

By default, PanelBuilder will create a top-level abs container, and all elements (including nested
containers) are placed within this top-level container.

Contexts

Contexts define scope within an OGLML document. PanelBuilder creates OGLML documents with a
default context named “opengear”. If multiple devices are linked to an OGLML document, each
device has its own separate context. Therefore, elements defined within the context of one device are
not visible within another device’s context.

OGLML Document Structure

The basic structure of the OGLML document is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<abs contexttype="opengear">
<api>
Global code
</api>
<meta>

Non-UI Tags here

52 ¢ ogScript Reference DashBoard CustomPanel Development Guide

<api>
Global ogScript code
</api>
<params>
Parameter declarations
</params>
<menus>
Menu declarations
</menus>
<widgets>
Widget descriptors
</widgets>
</meta>
<ui container>
<ui elements/>
<ui element>
Local scope ogScript code
</ui element>
<nested ui container>

<ui element/>
</nested ul containter>
</ui container>

</abs>

Details about the individual tags are documented in the section OGLML Reference.

OGLML URLs

An OGLML URL can be a standard URL or an external object reference. The fragment (“#name”) of
the URL can optionally provide the ID of a child element inside of the OGLML document to reference.
An external object reference URL has the form “eo://0x1234” where 0x1234 is the external object ID of
the external object containing the OGLML descriptor.

OGLML URL examples:

e http://myhost/mydocument.xml
(include the entire document at the given URL)
e https://10.0.100.1/document.xml#myid
(include the element with id="myid” from the given URL)
e co0://0xABI12
(load the OGLML descriptor from the external object with ID 0xAB12)
e ¢0://0xAB12#my-other-id

(load the OGLML descriptor from the external object with ID 0xAB12 and select sub-element with
id="my-other-id”)

OGLML Descriptor Format

The first byte of an OGLML Descriptor defines the type of information to follow.

No OGLML Descriptor (0x00)

DashBoard CustomPanel Development Guide ogScript Reference ¢ 53

http://myhost/mydocument.xml
https://10.0.100.1/document.xml#myid

This is used when there is no OGLML document referenced by this descriptor.

Field length Description
desctype 1 (uint8) 0x00
content 0 No content is provided in this case

Descriptor provided by external object (0x01)

This is used when the descriptor is contained in an external object.

Field length Description

desctype 1 (uint8) 0x01

content 2 The external object ID of the object containing the OGLML Descriptor
(uint16)

OGLML Document provided by URL (0x02)
The OGLML document is hosted on a web server. The descriptor provides the URL of the OGLML

Document.
Field length Description
desctype 1 (uint8) 0x02
urllen 1 (uint8) The length of the URL to follow including the null terminator
url urllen The null-terminated URL of the external object. This must begin with

“http://” or “https://”. The content on the webserver can be
uncompressed or follow web conventions for zip or deflate compression.

file:// URLs may also be used but this should generally only be for
development purposes and not actually on a released device.

Descriptor provides the OGLML Document in-line (0x03)

The OGLML File document immediately follows the descriptor type field.

Field length Description
desctype 1 (uint8) 0x03
content * OGLML XML File Content

Descriptor provides a GZipped OGLML Document in-line (0x04)

The OGLML document is provided immediately following the descriptor type field (document is
compressed in GZip format).

Field length Description
desctype 1 (uint8) 0x04
content * GZipped OGLML XML File Content

Descriptor provides a Deflate OGLML Document in-line (0x05)

The OGLML document is provided immediately following the descriptor type field (document is
compressed in Deflate format).

Field length Description
desctype 1 (uint8) 0x05
content * Deflate OGLML XML File Content

Custom

Widgets

Custom widgets are user-defined controls within a DashBoard editor. These allow device designers and

54 ¢ ogScript Reference DashBoard CustomPanel Development Guide

CustomPanel developers to reuse repeated elements within an OGLML document. Complex Ul
behaviour can be coded into the widget, which is hidden from the UI developer.

Custom Widgets allow the designer to design an element consisting of multiple controls, OGLML
markup tags and ogScript. This element can then be instantiated multiple times within an OGLML
document. Widgets may be defined within an OGLML document or made globally available in
DashBoard.

Widgets allow configuration parameters exposed to tailor the look, feel and behaviour. These
configuration parameters are also available through the PanelBuilder GUI, allowing simple
customization of the widget.

Widgets are defined by creating a Widget Descriptor, which consists of a section OGLML/ogScript
code that defines the controls. Additionally, a configuration block may be defined which creates a
configuration page for the widget within PanelBuilder.

Creating Widgets

Widget Descriptor Structure

The widget descriptor has a structure as outlined below:
<widgetdescriptor id="widget-id">
<config>
<params>
Configuration parameters here
</params>
<oglml>
Optional OGLML markup for configuration editor
</oglml>
</config>
<oglml>
<meta>
<params>
Private parameter declarations
</params>
<api>
Private ogScript functions
</api>
<meta>
<layout-container>
UI elements
</layout-container>
</oglml>
</widgetdescriptor>

OGLML Block

The OGLML section (encapsulated within an <oglm1> tag) contains the OGLML document to create
the widget. It may contain <meta>, <ogscript>, <api> and layout container tags in the same
manner as a standard OGLML document. Note that all declarations within the <oglml> section are
private to the widget.

Config Block

The config section (encapsulated within a <config> tag) contains OGLML document that creates a
configuration page for the widget. The configuration page is displayed within the Edit Component

DashBoard CustomPanel Development Guide ogScript Reference ¢ 55

dialog in PanelBuilder. By default, the default openGear layout will be used to present any parameters
declared within a <params> tag in the config block:

<widgetdescriptor id="alarmgrid">
<config>
<params>

<param access="1" name="String 1" oid="strl" type="STRING"
value="First"/>

<param access="1" name="String 2" oid="str2" type="STRING"
value="Second"/>

<param access="1" name="String 3" oid="str3" type="STRING"
value="Third"/>

<param access="1" name="String 4" oid="str4" type="STRING"
value="Fourth"/>

<param access="1" name="String 5" oid="str5" type="STRING"
value="Fifth"/>

<param access="1" name="String 6" oid="str6" type="STRING"
value="Sixth"/>

</params>
</config>
<oglml>
<simplegrid cols="3" rows="2">
<param height="40" oid="strl" widget="12" width="200"/>
<param height="40" oid="str2" widget="12" width="200"/>
<param height="40" oid="str3" widget="12" width="200"/>
<param height="40" oid="strd4" widget="12" width="200"/>
<param height="40" oid="str5" widget="12" width="200"/>
<param height="40" oid="stré" widget="12" width="200"/>
</simplegrid>
</oglml>
</widgetdescriptor>

‘m Position/Stretch Attributes h4 Style " Source

General Attributes

Name: X
D: X

String 1:

String 4:

String 5:

String 6:

alarmgrid

Figure 56 — Widget Configuration (Default Layout)

However, OGLML markup may be added by specifying it within an <oglml> block within the config
block.

Note If an <og1m1l> block is specified within the <config> section, only parameters included
in the <oglml> block will be displayed in the PanelBuilder “Edit Component” dialog.

The following is an example of a widget descriptor incorporating an OGLML configuration markup. In
the example, a <simplegrid> container is used to arrange configuration parameters into a 3x2 grid.

56 ¢ ogScript Reference DashBoard CustomPanel Development Guide

<widgetdescriptor id="alarmgrid-oglml">
<config>
<params>

<param access="1" name="String 1" oid="strl" type="STRING"
value="First"/>

<param access="1" name="String 2" oid="str2" type="STRING"
value="Second"/>

<param access="1" name="String 3" oid="str3" type="STRING"
value="Third"/>

<param access="1" name="String 4" oid="str4" type="STRING"
value="Fourth"/>

<param access="1" name="String 5" oid="str5" type="STRING"
value="Fifth"/>

<param access="1" name="String 6" oid="str6" type="STRING"
value="Sixth"/>

</params>
</config>
<oglml>
<simplegrid cols="3" rows="2">
<param height="40" oid="strl" widget="12" width="200"/>
<param height="40" oid="str2" widget="12" width="200"/>
<param height="40" oid="str3" widget="12" width="200"/>
<param height="40" oid="str4" widget="12" width="200"/>
<param height="40" oid="str5" widget="12" width="200"/>
<param height="40" oid="str6" widget="12" width="200"/>
</simplegrid>
</oglml>
</widgetdescriptor>

M‘.ﬂ Position/Stretch Attributes ’ Style Source h

General Attributes

Name: *

ID: X

Second

Fith

alarmgrid alarmgrid-ogim|

Figure 57 — Widget Configuration (OGLML layout)

If the widget descriptor includes a structtype attribute, PanelBuilder will use this as a filter to only offer
the widget for insertion if a struct parameter exists with matching structtype attribute.

Widget Samples

Numeric Keypad

This example creates a reusable control which presents a numeric keypad. The keypad accepts
parameters to map it to a specific OID to update, as well as name and a default value.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 57

Figure 58 - Keypad Custom Widget

The widget also defines a custom configuration panel, which is presented within PanelBuilder’s “Edit
Component” dialog.

(o]DRRVELR OID not specified

QIR name not specified

Default Value

Default Value Enabled

Figure 59 - Keypad Config Dialog

The widget descriptor to generate this widget is shown below. Comments have been added before
various sections of the code to identify their functionality.

The config block defines four parameters:

e Ext.Punch.Name — OID whose value the punchpad will manipulate

e Ext.Punch.DisplayName — Name to display in the title bar of the widget
e Ext.Punch.Default — Value to set if the DFLT button is pressed

e Ext.Punch.DefaultEnabled — Enables/Disables the DFLT button

There is an og1lml block within the config section to specify the layout of the configuration
parameters in the Edit Component dialog.

This widget implements an ogScript function, addDigit (), to update the param value as the user
types in the keypad.

The oglml section lays out the keypad using a table container, and hooks the addDigit () function to
the buttonpress handler for each digit button.
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<widgets>
<widgetdescriptor id="com.rossvideo.widget.punchpad v3"

icon="com.rossvideo.punchpad.png" inheritsrc="true" name="Punchpad
v3">

<!--Configuration section starts here-->
<config>

<!-- Variables that appear in the edit mode for the grid file and
that are part of the declaration for the widget -->

<!--Config parameter declarations start here-->

58 e ogScript Reference DashBoard CustomPanel Development Guide

<params>

<param access="1" maxlength="0" name="OID To use"
oid="Ext.Punch.Name"

type="STRING" value="OID not specified" widget="0"/>

<param access="1" maxlength="0" name="OID To use"
oid="Ext.Punch.DisplayName" type="STRING"
value="name not specified" widget="0"/>

<param access="1" constrainttype="INT_ NULL"
name="Ext.Punch.Default"

oid="Ext.Punch.Default" precision="0" strvalue="0"
type="INT16"

value="0" widget="0"/>

<param access="1" constrainttype="INT CHOICE" name="Default
Enabled"

oid="Ext.Punch.DefaultEnabled" precision="0" strvalue="On"
type="INT16" value="1" widget="8">
<constraint key="0">O0ff</constraint>

<constraint key="1">On</constraint>

</param>
</params>
<!-- Definition for the UI that appears in edit mode -->
<!--Config parameter layout starts here-->
<oglml>

<abs height="500" left="0" top="272" width="334">
<table height="150" left="0" top="0" width="800">
<tr>
<label anchor="east" fill="none" insets="0,0,0,5"
name="0ID To Use" weightx="0.0"/>
<param anchor="west" element="0" fill="both"
oid="Ext.Punch.Name" showlabel="false"
weightx="1.0" weighty="1.0"/>
</tr>
<tr>
<label anchor="east" fill="none" insets="0,0,0,5"
name="Title" weightx="0.0"/>
<param anchor="west" element="0" fill="both"
oid="Ext.Punch.DisplayName" showlabel="false"
weightx="1.0" weighty="1.0"/>
</tr>
<tr>
<label anchor="east" fill="none" insets="0,0,0,5"
name="Default Value" weightx="0.0"/>
<param anchor="west" element="0" fill="both"

oid="Ext.Punch.Default" showlabel="false"
weightx="1.0"

weighty="1.0"/>
</tr>
<tr>
<label anchor="east" fill="none" insets="0,0,0,5"
name="Default Value Enabled" weightx="0.0"/>
<param anchor="west" element="0" fill="both"
oid="Ext.Punch.DefaultEnabled" showlabel="false"
weightx="1.0" weighty="1.0"/>

DashBoard CustomPanel Development Guide ogScript Reference ¢ 59

</tr>

</table>
</abs>
</oglml>
</config>
<!-- Definition for the widget UI itself -->
<oglml>
<!-- Temporary internal variables to the widget -->
<!--Local parameter declarations start here-->
<params>
<param access="1" maxlength="0" name="Punch.Temp.Number"
oid="Punch.Temp.Number" type="STRING" value="" widget="0"/>
</params>
<!-- Global functions for the widget to use -->

<api id="addDigit" name="addDigit">
function addDigit(digit)
{

var value=params.getValue ('Punch.Temp.Number',0) ;

var i;
if (digit=='-")
{
if (value[0] !'= '-")
value = '-' + value;
else

value = value.substring(1l) ;
}
else if (digit == '."'")
{
// is there a '.' already?
for (i=0;is<value.length;i++)
{
if (valueli]l=='.")
return;
}
value +='."';
}
else if (value[0] !'= '0'")
value += digit;
else // first digit is a 0
value = digit;
params.setValue ('Punch.Temp.Number',6 0,value) ;
}
</api>

<style id="TextStyle" name="TextStyle"
value="size:20;font:bold;bg#000000; fg#FFFFFF;" />

<abs height="317" left="641" style="bdr:etched;" top="355"
virtualheight="317" virtualwidth="371" width="371">
<abs left="147" top="174"/>

60 ¢ ogScript Reference DashBoard CustomPanel Development Guide

<!--Title bar begins here-->
<label height="23" id="Var.Name" left="25"
name="%value['Ext.Punch.DisplayName'] [0]%"

style="size:16;font:bold;txt-align:west;" top="14"
width="105"/>

<param expand="true" height="32" oid="Punch.Temp.Number"

right="20"
showlabel="false" top="10" width="200"/>
<!--Table starts here-->
<table bottom="10" left="20" right="20" top="49">
<!--Table row showing buttons 7, 8, 9, DFLT-->
<tr>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="7" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('7') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="8" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('8') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="9" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('9') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"
height="43"

name="DFLT" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">
var enabled =
params.getValue ('Ext.Punch.DefaultEnabled',0) ;

var value =
params.getValue ('Ext.Punch.Default',0) ;

if (enabled == 0)
return;
params.setValue ('Punch.Temp.Number', O,
value. toString()) ;
</task>
</button>
</tr>

<!--Table row showing buttons 4, 5, 6, CLR-->
<tr>

<button buttontype="push" colspan="1" fill="both"
height="43"

name="4" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

DashBoard CustomPanel Development Guide ogScript Reference o 61

height="43"
height="43"
height="43"
height="43"
height="43"
height="43"
height="43"

<task tasktype="ogscript">addDigit('4') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="5" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('5') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="6" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('6') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="CLR" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task asktype="ogscript">
params.setValue ('Punch.Temp.Number', 0, '0');
</task>
</button>
</tr>

<!--Table row showing buttons 1, 2, 3, Enter-->
<tr>
<button buttontype="push" colspan="1" fill="both"

name="1" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('l') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="2" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('2') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="3" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('3');;</task>
</button>
<button buttontype="push" colspan="1" fill="both"

name="ENTR" rowspan="2" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">

params.setValue ('%value['Ext.Punch.Name'][0]%',0,

params.getValue ('Punch.Temp.Number',6 0
))
params.setValue ('Punch.Temp.Number', 0, '0');

</task>

62 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

</button>
</tr>

<!--Table row showing buttons +/- 0-->

<tr>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="+/-" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('-"') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="0" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('0') ;</task>
</button>
<button buttontype="push" colspan="1" fill="both"
height="43"
name="." rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">
<task tasktype="ogscript">addDigit('.') ;</task>
</button>
</tr>
</table>
</abs>
</oglml>

</widgetdescriptor>
</widgets>

Descriptor Location

Descriptors may be defined within an OGLML document, stored in an external file, or retrieved directly
from a device.

Inline Widget Descriptors

Descriptors are defined within the <meta> block of an OGLML document. Descriptors may not be
nested within other widget descriptors. All widget descriptors must be placed within a <widgets>
block within the <meta> block.

External Widget Descriptor Files

The widget descriptor may be stored in an external file. External widget descriptor files have the
extension .widgetdescriptor.

DashBoard searches for widget descriptors in the following locations:

e Within a widgets subfolder within the folder containing the OGLML document.
e Within the widgets folder inside the DashBoard installation directory.

e A file specified by use of the baseurl attribute of a widgetdescriptor tag.

Device-served Widget Descriptors

A device may specify a URL to retrieve widgets using reserved OID 0xFF14. This mechanism will
retrieve a single file from the specified URL. This is the recommended approach for openGear device
developers.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 63

Parameter Mapping

Parameters declared within the config block are visible to the configuration editor and the widget itself.
External ogScript functions may access these parameters via the getConfigParams function of the
widget object.

Parameters declared within the oglml block are private to the widget, and not visible to the config block.
Global parameters are visible within the widget when referenced explicitly.

Widgets also support relative parameters. When a relative parameter is referenced, its name is
concatenated to the string specified in the baseOID attribute of the widget instance.

Parameters within a widget are interpreted as relative if one of the following conditions is met:

e the OID begins witha "."

e the parameter has the attribute relative setto true.

o the parameter reference explicitly specifies the baseOID by explicitly prefixing $baseoid$ to the
OID of the parameter.

A parameter may force reference to a local parameter by prepending $widget$% to the OID of the
referenced parameter.

Example

The widgetdescriptor keyer references the parameters .clip and .gain. Global parameters are
created called keyerl.clip, keyerl.gain, keyer2.clip and keyer2.gain. The widgets then may
be instantiated as:

<widget id="keyl" widgetid="keyer" baseoid="keyerl"/>
<widget id="key2" widgetid="keyer" baseoid="keyer2"/>
The keyl widget’s parameters .clip and .gain are concatenated with the baseoid keyer1 thus

mapping them to the global parameters keyerl.clip, and keyerl.gain. In a similar manner, key?2
widget’s parameters map to the global parameters keyer2.clip, and keyer2.gain.

The baseoid attribute may be queried and modified dynamically through the ogScript getBaseOID
and setBaseOID member functions of the widget object.

Using DashBoard Prebuilt Custom Widgets

DashBoard provides several prebuilt custom widgets that can be customized for use in your
CustomPanel. You can access these custom widgets from the Widget button on PanelBuilder Edit
Mode toolbar. Check if you can leverage one of the existing widgets, by referring to the list of widgets
below:

e ogScript Macro Group — This widget allows you to create scripts in the Visual Logic editor
and presents as either a list of buttons or a playlist.

e XPression Desktop Preview 1.0 — This widget allows you to preview XPression playlists
from a DashBoard CustomPanel.

e XPression CountDown 1.0 — This widget allows you to create an XPression Countdown
timer.

Simply follow the instructions below to add a custom widget to your DashBoard CustomPanel, and then
refer to the additional implementation steps for the widget of your choice.

To Add a Custom Widget in DashBoard

1. Open DashBoard and select PanelBuilder Edit Mode.
The Edit Mode toolbar appears.

64 ¢ ogScript Reference DashBoard CustomPanel Development Guide

2. Click the Widget button and click and drag your mouse on the canvas to determine the area that
our widget will appear.

Selection

@
Resize

Grid/
S Button

ap [
i Func
Line Button

® O *
Browser Params | Widget

v
@ Timers

(x) Parameters

= Data Sources

3. Select the widget of your choice from the list of widgets.

O Incert into ABS Companent

Widgets

p X X

ogScript Macro Group X esktop Preview 1.0 pt ountDown 1.0

Cancel

4. Click Ok and then refer to the additional instructions for that widget.

ogScript Macro Group Widget

This widget allows you to create scripts using the Visual Logic editor and can be displayed as either a
list, a playlist, or buttons. The display types are shown below:

List (Default) Playlist Buttons

Script Name Script Name

Debug Debug

Run/Advance

Figure 60: Display Types

Important: Unalike most DashBoard components and Device Uls, you can only add scripts to this
widget when the panel is live. This is useful if you need to make live changes to scripts without
switching to PanelBuilder Edit Mode. When the panel is live, you can edit this widget directly by right-
clicking and selecting Edit.

The figure below illustrates the two areas that you must edit the widget:

DashBoard CustomPanel Development Guide ogScript Reference ¢ 65

Live Panel: Edit Mode:
This opens the Script/Trigger Editor. This opens the Component Editor.

[d PanelBuilder Edit Mode @ Switchboard S Global Labels

am-

Edit Mode £ ogscript_macro_group_widgetgrid X

A

[d PanclBuilder Edit Mode - G Switchboard R Global Labels

T ogscript_macro_group_widgetgrid X

-
Select &

Selection
Drag Script Name

Script Name
1

Move Resize

Debug

Takel

m T

Take2 Label

Grid/.
Table

ar

Zoom Line NDI

8 9

Browser Params Widget

Figure 61: The live panel’s edit button is shown on the left and the panel in PanelBuilder Edit
Mode is shown on the right.

Additional resources can be found about Visual Logic in the DashBoard User Guide.

To Configure the ogScript Macro Group Widget

These instructions assume you have already added this widget to your DashBoard CustomPanel from
the Edit Mode toolbar under Widgets and are ready to configure it.

e For more details see, To Add a Custom Widget in DashBoard.

1. To change the display type, double-click on the widget to open the Component Editor.
]

ent Tag Widget Attributes Position/Stretch Attributes Style Source
<listener/> < =<color/> <lookup/> General Attributes

Name: | 3¢

Device

ID: %

Display Type Buttons [List | Playfist

on;bg-fillcrop

Disabled

Bass OID: | %

Apply Changes Apply and Close

From the Widget Attributes tab under Display Type, select Buttons, List (default), or Playlist
as your preferred display type and apply your changes.

2. To navigate to the live panel editor, on the top toolbar click PanelBuilder Edit Mode to exit
Edit Mode.

Tip: You can also press the keyboard shortkey to switch modes (CTRL + G).
If your canvas does not have grid marks, then you are in live mode.

To edit the live panel, right-click on the widget and click Edit.

66 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Script Name

The Script/Trigger Information Editor opens.

Warning: Any changes you apply in this editor will occur immediately since the panel is live.

3. Once the Script/Trigger Information tab opens, enter the following:
e Name — Enter the script name.
e Trigger — Enter the trigger ID.
e Image — Select an image from the file browser. (optional)

e Background — Select a background color. (optional)

4. Open the ogScript Editor tab from the top menu, and create a script using the Visual Logic
blocks or ogScript palette.

Script/Trigger Information ogScript Editor

Visual ogScript Q 3 icon size: small v Search:

Parameters + 1 4 Control and APls

) Reload

.

Loca Varaties

0gscl
— - |

5. Go back to the Script/Trigger Information tab and click Add Script to add the script you
created to the list on the right side.

Script... Trigger ~ Remove1 ® ' ScriptiTrigger Information ogSeript Editor
T

-
O e Name: Debug

Trigger: 1

Image: | X

Background: #262A2F
Foreground: Eassad -

Add Seript

6. Click Apply to apply your changes and then close the editor.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 67

7. To verify that your script works as intended click Run.

¥ ogscript_macro_group_widgetl.grid] * ‘openGear Debug Information x

2 Initialized: 0
#Failed: 0

Script Name Average Init Time: 1.0 (ms)

Average Response Delay: -1.0 (ms)

Debug Average Packet Time: -1.0 (ms)

Total Packets: 0

[] Draw OGLML Outlines

[] OGP/OGLML Strict Mode

Parameter Inspector
Exceptions/Messages:
Print All v

07:17:28:009: hello

Reset

68 ¢ ogScript Reference DashBoard CustomPanel Development Guide

XPression Desktop Preview 1.0

Setting up the XPression Desktop Preview in DashBoard

Before you begin, you must have already created your first DashBoard channel and completed the initial
configuration to allow streaming through a global style.

Note: XPression Version 10.0 or later is required.

To Configure the XPression Desktop Preview in DashBoard

These instructions assume you have already added this widget to your DashBoard CustomPanel from
the Edit Mode toolbar under Widgets and are ready to configure it.

1.
2.

3.
4.

For more details see, To Add a Custom Widget in DashBoard.

To configure your XPression Desktop Preview Client, open XPression studio v.10.0 or later.

Click Edit from the top menu, select Hardware Setup.
The hardware Setup Dialog box opens.

Mode »
&7 Undo/Redo History

Undo Ctrl+Z

Redo Shift+Ctrl+Z
[} Select Ctrl+Q
1. Move Crl+W
@ Rotate Ctrl+E
J, Scale Ctrl+R
S\ Pivot Ctrl+T
45 Object Align »

Human Interface Devices »

Scripting »

OpenMAM Setup...

Clip Store Setup...

Keyboard / GPI Mapping...

Tessera »

Hardware Setup...

Preferences...

To add a new desktop preview, select the Inputs/Qutputs tab and click Add.

Select a new XPression Desktop Preview Client from the Add New FrameBuffer Board and
click OK. See the example below:

Hardware Setup X

0 Crsteagt Dayirs

Configurs.,. Dajatall o - Mov=Ug

T

Set the Host Address to localhost, ensuring both DashBoard and XPression running on the
same system.

Select Channel 1 (the channel of the Desktop Preview Client) and click OK to ensure that the
channel option does not correlate with the Output Monitors channel. See the example below:

DashBoard CustomPanel Development Guide ogScript Reference ¢ 69

Desktop Preview Client - Setup X

7. To assign the Desktop Preview Client to a Preview Output Monitor, open the Preview
Monitors tab and select the Desktop Preview Client as the Up Next Preview Output.

X

Hardware Setup

Note: In the Sequencer Playlist left column, select Output Monitors to view the status the status
of the Desktop Preview Client. The status should show the status is not connected before the

widget is added to the DashBoard panel.
Now that you have successfully generated a preview for the focused items in XPression, you
can proceed to add the XPression Desktop Preview widget to your DashBoard CustomPanel.

70 ¢ ogScript Reference DashBoard CustomPanel Development Guide

XPression CountDown 1.0

The XPression Countdown widget allows you to monitor a specific framebuffer and layer of XPression
to determine what take item is currently on that layer, and the amount of time left for that take item.

CUSTOMER AD 1

TakelD: 10000
Framebuffer: 2

To Configure the XPression CountDown Widget

Before you begin, you must set up the CountDown Timer Broadcast on the XPression. Then you can
add the widget to your DashBoard CustomPanel.

Note: XPression Version 10.0 or later is required.

Set up the CountDown Timer Broadcast on the XPression

1. To configure your XPression to broadcast the countdown data, open XPression Studio v.10.0 or
later.

2. Click Edit from the top menu, select Hardware Setup.
The hardware Setup Dialog box opens.

3. To add a countdown timer broadcast, select the Timecode I/O tab and click Add.

Hardware Setup

4. Select the Countdown Timer Broadcast and fill in the appropriate Network Settings and Options.
Take note of the UDP Port because you need to enter the same port information in DashBoard
later.

DashBoard CustomPanel Development Guide ogScript Reference o 71

Countdown Timer Broadcast

~ Metwork Settings
¥] Enabled
UDP Destination IP: [UDP Broadcast
- Options
Clock Format: [Indude Hours
[w] Indude Frames
Layers to Indude: [0,1,2
oK

Click OK.
Verify that the state is Active.
Preview & Monitor I GP1 / Tally Boards I Camera Tracking I Server Channels
|

| Last Resuit

5.

Inputs /Outputs | Audio Devices | Timecode 1/0
Type | ® | st
0 Active

Nr. | Brand
1 Countdown Timer Broadcast UDP

Now that you have successfully broadcast the Countdown Timer from XPression, you can proceed to

add the XPression CountDown Timer widget to your DashBoard CustomPanel.

Add the Widget to the DashBoard CustomPanel
Open DashBoard and either create a CustomPanel or open an existing one. Select PanelBuilder

1.
Edit Mode.
The Edit Mode toolbar appears.
Click the Widget button and click and drag your mouse on the CustomPanel canvas to determine

the area that your widget will appear.

Edit Mode

-
Select &
Drag

s

Resize

0 (]
Tab Basic
Spiitk Canvas Help
Drawer.,
T [m]
Button

i
Label

Grid/
Table
ap [
NDI Func
Button
& O I
Widget

Browser Params
v
@ Timers

(x) Parameters

= Data Sources

Select the XPression CountDown widget

DashBoard CustomPanel Development Guide

3.

72 ¢ ogScript Reference

[Insert inte ABS Component X

o

ogScript Macro Group

ase OID: 3

Cancel

Click Ok.

4. After you have added the XPression CountDown 1.0 widget, double-click to open the Component
Editor. The Widget Attributes tab should display the options shown below:

Layer:

Show: (®) Default Widget

TakelD Name

Countdown

Individual Data Style: bg#ff00ff

Select from the following options:
e UDP Port — Enter the number of the port that XPression sends the take information to.
e Framebuffer — Enter the number of the framebuffer that you want to listen for.
e Layer — Enter the layer ID that you want to listen for.

e Show —Select Default Widget to display information for all fields or select an individual
field to display a single field.

e Individual Data Style — If you selected an individual field to be shown in the previous
option, then click Edit to select a style for that field. This config option does not apply to
the Default Widget option.

Apply your changes.

5. Verify that your widget displays the appropriate fields. If you decided to show only one individual
data field, then only a label will appear.

The example below displays the default widget (showing all available fields):

CUSTOMER AD 1

TakelD: 10000
Framebuffer: 2

Tip: If the countdown timer data is not displayed, as shown below, go back to troubleshoot the
XPression CountDown Timer Broadcast and ensure that the XPression broadcast and the
DashBoard widget are set to use the same UDP port.

DashBoard CustomPanel Development Guide ogScript Reference o 73

CUSTOMER AD 1

TakelD:
Framebuffer: 1

74 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Custom APIs Within CustomPanels

You can use OGLML’s <api> tag to create a library of reusable ogScript code segments (APIs) within
a CustomPanel.

You can also save ogScript code segments as JavaScript files (.js), and reference them from within
<api> tags. This allows you to maintain an ogScript library that can be used by any of your
CustomPanels.

The <api> tag provides a location for global ogScript code. Contents of the <api> tag are processed by
the ogScript compiler directly. Elements within an <api> tag are scoped where they are declared in the
XML,; siblings and children of siblings have visibility to elements declared within the <api> tag.

The <api> tag should generally be placed within a <meta> tag for global ogScript code encapsulation.
However, ogScript code intended to dynamically generate and modify the XML should be placed in a
top-level <api> tag.

Syntax
<api>
global-scope elements
</api>
Attributes

None.

This section includes information about about how to use the <api> tag effectively. It contains the
following topics:

e [Lexical Order and Loading Order

e Enabling Reuse by Keeping APIs in Separate Files
e Managing Scope

Lexical Order and Loading Order

<api> tags load in lexical order (the order in which they appear in the .grid file) unless the immediate
attribute is set to true . When multiple <api> tags are set to load immediately, they load in lexical
order relative to each other, but before any non-immediate <api> tags.

Interaction with On Load Handlers

DashBoard provides change handlers that are triggered by certain events. The loading of the panel is
one such event. These are also triggered in lexical order, so, if an onload handler needs to use code that
is defined in an <api> tag, one of these conditions must be met:

o The <api> tag being used by the onload handler must appear before the handler in the .grid file.

e The immediate="true" attribute of the <api> tag must be set, to load the API immediately.

Example to Demonstrate the Effects of Lexical Order and Loading Order

This section consists of a five-part example that illustrates the effects of lexical order and loading order.

Example — Part 1: Simple API Plus an onload Handler

The first part of the example has an <api> tag that defines a pretty printer function and prints the global
namespace to the debug pane.

The <api> tag is followed by an ogscript element that handles the onload event for the enclosing top-
level canvas.

DashBoard CustomPanel Development Guide ogScript Reference o 75

Here is the code:

<abs contexttype="opengear" id="main-abs">
<meta>

<api id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify (obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));
</api>

<ogscript handles="onload" id="main-abs-onload"
name="Main onload handler" targetid="main-abs">
ogscript.debug ('First onload handler');
</ogscript>

</meta>
</abs>

When the panel is loaded, the output appears as follows:
13:05:10:759: first api:

{}

13:05:10:759: First onload handler

Note that the global name space is reported as an empty object {} because,
although we defined the function pretty(), we didn't assign it to a var.

Also note that the onload prints out after the API. In the next example, the lexical order of the onload
handler and the <api> tag are reversed.

Example — Part 2: .grid File with <api/> Defined After <ogscript/> Element

In the second part of the example, the <api> tag appears after the ogScript onload handler:

<abs contexttype="opengear" id="main-abs">
<meta>

<ogscript handles="onload" id="main-abs-onload"
name="Main onload handler" targetid="main-abs">
ogscript.debug ('First onload handler');
</ogscript>

<api id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));
</api>

76 ¢ ogScript Reference DashBoard CustomPanel Development Guide

</meta>
</abs>

When the panel is loaded, the output appears as follows:

13:11:35:480: First onload handler
13:11:35:491: first api:
{}

The output shows that the lexical order of onload handlers and APIs is significant.

The next part of the example adds another <api> tag to the CustomPanel, to put an object into the
global namespace.

Example — Part 3: Putting an Object in the Global Namespace

The third part of the example is the same as the second part, except that it has an additional <api> tag
that puts an object into the global namespace.
<abs contexttype="opengear" id="main-abs">

<meta>

// Code from Example Part 2: onload handler and first API

<ogscript handles="onload" id="main-abs-onload"
name="Main onload handler" targetid="main-abs">
ogscript.debug ('First onload handler');

</ogscript>

<apl id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));
</api>

// Additional second API for Example Part 3:
<api id="api-second" name="Second API">

// define object in global namespace

var animal = {

type: 'tortoise'

}

// print global namespace to debug pane

ogscript.debug ('second api:\r\n' + pretty(this));
</api>

</meta>
</abs>

When the panel is loaded, the output appears as follows:
13:20:56:437: First onload handler
13:20:56:447: first api:

{}

13:20:56:447: second api:

DashBoard CustomPanel Development Guide ogScript Reference o 77

"animal"™: {

"type": "tortoise"

The output shows that the onload handler and the APIs have loaded in their lexical order, and we've
now added the var object named animal to the global namespace.

The next part of the example adds one more <api> tag that purposely conflicts with the animal
defscription we just defined.

Example — Part 4: Adding an <api> Tag that Conflicts with a Previous <api> Tag

The third part of the example introduced an <api> tag that defined a var named animal, with a type
value of tortoise. This var exists in the global namespace.

The fourth part of this example contains an additional <api> tag that also defines a var named animal,
in conflict with the previous API.

The code for this part of the example is the same as before, except that a third <api> tag is added:

// The following API will conflict with a previous API
// Insert it after the second API.
<api id="api-third" name="Third API">

// define object in global namespace

var animal = {

type: 'hare'

}

// write out global namespace.

// Note that this uses pretty() from in another api

ogscript.debug ('third api:\r\n' + pretty(this));
</api>

When the panel is loaded, the output appears as follows:

13:33:24:091: First onload handler
13:33:24:098: first api:
{}
13:33:24:098: second api:
{
"animal": {

"type": "tortoise"

}
13:33:24:099: third api:
{

"animal"™: {

"type": "hare"

The output shows that the animal’s t ype has been redefined as a hare instead of a tortoise. The next
part of the example sets the immediate=true attribute for the third (hare) APL

78 o ogScript Reference DashBoard CustomPanel Development Guide

Example — Part 5: API Definition with immediate="true"

The fifth part of the example demonstrates the importance of order. The third API has the attribute
immediate = ‘true’, which means it is to be loaded before others that do not have their immediate
attributes set to true, regardless of the order they appear in the code.

The third API uses the pretty () function. Because the third <api> tag is processed before pretty ()
is defined, an error results.
The code is the same as before, except the following line:
<api id="api-third" name="Third API">
Is replaced with this:
<api id="api-third" immediate="true" name="Third API">

Because the <api> tag that appears last in the code has its immediate attributes set to true, it is
loaded before all others, and before the onload handler.

When the panel is loaded, the output appears as follows:

EXCEPTION:
ReferenceError: "pretty" is not defined. (Element API: api-third#7)

Because this <api> tag was invoked before all the other ones, the pretty () function it uses from
another API isn't yet defined, so we get an error.

You can fix this problem in one of two ways:

1. Removing the immediate="true" attribute, unless it is required. Removing it and ensuring the API
was loaded after APIs upon which it depends would fix the problem.

2. Set the immediate="true" attribute for the <api> tag that provides pretty (). As long as it's
lexically in front of the third API, we'll get the behaviour we want or expect, as shown here:

13:47:33:833: first api:
{}
13:47:33:834: third api:
{

"animal": {

"type" . "hare"

}
13:47:33:864: First onload handler
13:47:33:865: second api:
{
"animal": {

"type": "tortoise"

The final output shows:

e those <api> tags set to load immediately did so before both the onload handler, and the second
<api> tag that didn't have immediate="true" set.

e the immediately loaded <api> tags loaded in their relative lexical order, so the third <api> tag
could use the pretty () function defined in the first.

DashBoard CustomPanel Development Guide ogScript Reference ¢ 79

e the tortoise beat the hare because two <api> tags defined the same global variable, and the last
one to do so "won" the race.

The final .grid file for this example is as follows:

<abs contexttype="opengear" id="main-abs">
<meta>

<ogscript handles="onload" id="main-abs-onload"
name="Main onload handler" targetid="main-abs">
ogscript.debug ('First onload handler');
</ogscript>

<apili id="api-pretty" immediate="true" name="Pretty Printer">
// pretty printer for objects
function pretty (obj) {
return JSON.stringify(obj, null, 2);

// print global namespace to debug pane
ogscript.debug ('first api:\r\n' + pretty(this));
</api>

<api id="api-second" name="Second API">
// define object in global namespace
var animal = {

type: 'tortoise'

// print global namespace
ogscript.debug('second api:\r\n' + pretty(this));
</api>

<api id="api-third" immediate="true" name="Third API">
// overwrite the existing definition of animal
var animal = {

type: 'hare'

// write out global namespace
ogscript.debug('third api:\r\n' + pretty(this));
</api>

</meta>
</abs>

Loading order with Minimal Mode and Subscriptions Protocols
If a device developer has implemented support for Minimal Mode and Subscriptions

protocols on an openGear protocol (OGP) device and the DashBoard CustomPanel that
interacts with it also supports these protocols, then when the panel loads it will only load
parameters from the device's indicated minimal set of parameters and its’ subscriptions list

80 ¢ ogScript Reference DashBoard CustomPanel Development Guide

of OIDs. This also applies to Ross products that support these protocols, like Ultrix and
Ultritouch.

Tip: You can check whether a DashBoard CustomPanel supports subscription by double-
clicking on the empty canvas to open the Component Editor, and navigating to the topmost
level of the panel’s source code to verify whether a subscription="true" tagis presentin
the top level attributes. Alternatively, if multiple device contexts are used, the subscription
tag may only appear in the <context/> tag. In the DashBoard user interface, you may also
notice additional options are available for devices that support subscriptions, and these
selection choices remain inactive if they do not apply to a selected device.

Enabling Reuse by Keeping APIs in Separate Files

Although all the examples in this section show the API code inline with the OGLML, it's good practice
to keep them in separate JavasScript files.

This allows you to reference the API code from any CustomPanel, and to effectively update all uses of
the API code by editing a single JavaScript file.

We recommend using a naming convention such as the following:

o myfile.js for 'pure' javascript files that do not contain ogScript or params objects specific to
ogScript, and therefore could be used in DashBoard or anywhere else.

o myfile.grid.js for APIs that rely on using ogscript and/or params objects.

DashBoard's GUI provides a convenient way to navigate to JavaScript files you wish to include. The
impact on the OGLML is to set the src attribute like this:

To reference a JavaScript file from within the tag, set the src attribute to the filepath, as in the following
example:

<apil src="file:/path/to/file/myfile.grid.js"/>
Benefits of using separate files for APIs include the following:

e You can easily share APIs between different custom panels.

e For ‘pure’ JavaScript files, you can quality assurance tools such as JSHint to weed out
programming.

DashBoard CustomPanel Development Guide ogScript Reference o 81

Managing Scope
Everything defined within an <api> tag has global scope. This means that naming clashes are likely to

occur if you include <api> tags from multiple authors.

Consider the following two APIs, each of which contains a function named initialize ():

// Transcendental Vector Engine API
function initialize (argl, arg2) {
// do stuff in <api/> 1

// Pressurized Water Reactor API
function initialize (argl) {
// do stuff in <api/> 2

return someValue;

Whichever of these two APIs appears later in the .grid file overwrites the previous API’s
initialize () function, almost certainly producing undesirable results.

To minimize and ideally eliminate such problems, we strongly recommend the use of JavaScript's
module pattern because it minimizes use of the global namespace.

An Internet search for 'Javascript Module Pattern' provides plenty of educational material at some
depth. The following section provides a concise summary.

The Module Pattern

The main idea of the module pattern is to keep almost everything private to the module, which is
implemented as an immediately invoked function expression, as demonstrated in the following example:

var myModuleName = (function() {

// every object I define here is kept private and cannot be
// accessed from outside the module because they are contained
// by a 'closure' which is the space between the outermost

// curly brackets {..} in this example.

function initialize () {
// do stuff

// The objects I wish to publish are referenced in this JSON object

// that allows precise control over what is revealed to client apps

return

initialize: initialize

PO

Usage from elsewhere in the CustomPanel is simple, and which particular initialize function you you
use is clear:

TVE.initialize (5, 7); // initialize transcendental vectors

var isSafe = PWR.initialize('Reactor B'); // initializes PWR reactor B

82 e ogScript Reference DashBoard CustomPanel Development Guide

The code inside the included JavaScript files might look like this:

Transcendental Vectors Engine <api/>
// Code in the file, transcendentalVectorsEngine.grid.js:
// This puts an object called 'TVE' in the global namespace
var TVE = (function() {
function initialize (argl, arg2) {
// do stuff

// publish API
return {

initialize: initialize
PO

Pressurized Water Reactor <api/>
// Code in the file, pressurizedWaterReactor.grid.js:
// This puts an object called 'PWR' in the global namespace
var PWR = (function () {
// private attribute - cannot be accessed from within the Custom Panel

var temp;
function initialize (argl) {

// do stuff
return temp < 200;

PO

DashBoard CustomPanel Development Guide ogScript Reference ¢ 83

OGLML Reference

In This Section

This section describes the OGLML tags.
The following topics are discussed:

e General Attributes
o Style Hints

e Layout/Container Tags
o Widget Tags

e Non-UI Tags
e Device Resource Declarations

e Device Resource Tags

e Macro Expansion

General Attributes

An OGLML document consists of a series of (nested) tags, described in detail in the following sections.
Each tag can take optional attributes. The following chart lists attributes that can be used with all tags.

Note that there are also tag-specific attributes; these are discussed in the Tags section.

You can also find more information about

84 e ogScript Reference DashBoard CustomPanel Development Guide

o Using OGP Devices that Support Subscriptions Protocol

O subscriptions

O Examples

Syntax

<component attribute="value" attribute="value" ... >

General Attributes

Attribute
containertype

scroll

contexttype

objectid

objecttype

Values

bottom
inset
etched
raised
lowered
tabpage

true

false
horizontal
vertical

always

opengear

String

Restrictions

Should not be
used with
“browser” tag.
Nesting within
another “scrolls
element is not
recommended

Scrolling for the
“menu” tag will
always be true.

Must be unique
within all OGLML
files displayed by
a device.

IDs must only

Description

Adjust the border and shading of the
component. See the examples below.

Indicates that the component created by
the tag should be enclosed in a
scrollable container. If the display is too
small to display the component,
horizontal or vertical scrollbars are
added.

Provides both horizontal and vertical
scrollbars

Provides no scrollbars
Provides only horizontal scrolling
Provides only vertical scrolling

Forces horizontal and vertical scrollbars
to always be visible.

A device context is a data structure that
contains information about the attributes
of a device. The contexttype indicates
the type of device or data source in the
values.

node-id of the source of parameters
within container. The objectid is passed
onto child elements and containers.

Type of device when communicating
with an openGear or DashBoard
Connect device.

Used to uniquely identify/reference an
element in the OGLML file.

DashBoard CustomPanel Development Guide

ogScript Reference ¢ 85

Attribute

subscriptions

width

height

style

Values

Boolean

Positive integer

Positive integer

style hints

Restrictions
use A-Z, a-z, 0-9,

“ o«

- and* "
characters.

Required for
devices that
support
subscriptions
protocol.

This attribute can
only be added to
Layout/Container
tags.

If you are using
more than one
OGP device with
subscriptions
support as a data
source for your
CustomPanel,
you can use
context (or device
context) tags.

Required for
browser tags

Required for
browser tags

If a parameter
already provides
style hints as part
of its constraint,
style hints should
not be overridden
with this style tag
— results are
unpredictable.

Description

When set to true, this flag indicates
support for openGear Protocol (OGP)
JSON devices that support the
Subscriptions Protocol. These protocols
significantly improve the handling of
OGP JSON device communication by
eliminating unnecessary parameter
updates.

Specifies the preferred with (in pixels) for
a component. May be ignored by
DashBoard depending on the
component.

Specifies the preferred height (in pixels)
for a component. May be ignored by
DashBoard depending on the
component.

openGear Style Hints are used to specify
the background color, foreground color,
icon, and border for certain components.
Refer to Style Hints.

86 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

Using OGP Devices that Support Subscriptions Protocol

Using OGP JSON devices that support subscriptions is recommended to:
e Optimize memory usage and communication
e Increase panel efficiency

e Load device panels faster

Overview of Requirements to Support Subscriptions on the CustomPanel Side
DashBoard CustomPanels that have a data source where the OGP device supports the subscription
protocol will require the following components to take advantage of subscriptions:

1. The subscriptions="true" attribute must be added to either context (device context) tags
or a Layout/Container Tags. The following other General Attributes are required:
contexttype="opengear", objectid="my ID Here", objecttype="my DeviceType

Here".

Tip: It is recommended that you use the DashBoard Component Editor to add the data source,
and when you add the device that supports subscriptions you can select the auto-subscribe
checkbox to add this automatically.

2. The subscription oids="o0idl,0id2,0id3*" list must be specified in the panel. This
comma separated list supports wildcards and must be added to indicate which device OID
updates the DashBoard CustomPanel will always receive. See subscription

Note: If you followed the tip in step 1 and added a device context, you will still need to add the
oids manually to the template provided.

3. Optional: You can make use of the new subscribe and unsubscribe functions to modify params
Objects.

Tip: You can use the ogScript Editor > Script Palette to add these functions.

For related resources, see: context (device context), subscriptions, meta, subscription

subscriptions

When set to true in a Container or Layout Tag, this attribute indicates support for openGear
Protocol (OGP) JSON devices that support the Subscriptions Protocol. These protocols significantly
improve the handling of OGP JSON device communication by eliminating unnecessary parameter
updates. Panels must also indicate a list of subscription OIDs to receive in addition to the minimal set.

Note: When you drag and drop components from a DashBoard Connect or OGP device panel into
another DashBoard panel, you will see a prompt that allows you to automatically enable subscriptions
for the device (which adds the subscriptions="true" tagto your panel), and/or auto-subscribe to
parameters (which adds the list of subscription OIDs).

DashBoard CustomPanel Development Guide ogScript Reference o 87

Insert into ABS Component s

anel, you may
nation panel to of the s ns lists that it r

Parameter Subscription Options

&/ Enable subscriptions for this d

' Auto-subscribe to parameters

Tip: If the DashBoard Connect or OGP device does not support subscriptions, then the Parameter
Subscription Options will be grayed out throughout the DashBoard UI.

How device communication with the DashBoard Client has changed:

Instead of always receiving a full set of all the parameter updates from an OGP device, now panels can
get a minimal set of parameter updates that is sent by OGP devices. With subscriptions, panels can
indicate a list of subscription OIDs to receive in addition to the minimal set.

Note: It is necessary to indicate a list of subscription oids that the panel will always receive parameter
updates for from the OGP JSON device. See, subscription and add the list using the oids
attribute.oidsoidsoidsoids

You can see an example of the syntax below for a top level openGear context. In this case an <abs/>
absolute container is used, but any layout/container tag is valid.

Syntax of a Subscriptions Panel with Multiple Elements from a Device
<abs contexttype="opengear" id=" top" keepalive="false"
objectid="MyUltritouch..." subscriptions="true">
<meta>
<subscription oids="oidl, o0id2, oid3*" />
</meta>
</abs>

Example of a Subscriptions Panel with Multiple Elements from a Device

<abs contexttype="opengear" id=" top" keepalive="false"
objectid="MyUltritouch..." subscriptions="true">

<meta>
<subscription oids="db.touch*, deviceoptions.speakervolume"/>
</meta>
</abs>

Note: To add multiple device sources for the panel, add the subscriptions="true" attribute to each
device context tag, see: context (device context)

Syntax of a Subscriptions Panel with a Device Context Tag

<context contexttype="opengear" objectid="DevicelID..." subscriptions="true">
<meta>
<subscription oids="oidl, o0id2, oid3*"/>
</meta>

88 e ogScript Reference DashBoard CustomPanel Development Guide

</context>

Example of a Subscriptions Panel with Two Device Contexts
<abs contexttype="opengear" id=" top" keepalive="false"
objectid="MyUltritouch..." objecttype="Ultritouch Device">

<context contexttype="opengear" objectid="Kyles Ultritouch..."
subscriptions="true">

<meta>
<subscription oids="db.touch*,deviceoptions.speakervolume" />
</meta>
</context>

<context contexttype="opengear" objectid="Daves_Ultritouch..."
subscriptions="true">

<meta>
<subscription oids ="devices*, deviceoptions.lcdbrightness"/>
</meta>
</context>
</abs>

For related resources, see: context (device context), subscriptions, meta, subscription ,

DashBoard CustomPanel Development Guide ogScript Reference ¢ 89

Using OGP Devices that Support Subscriptions Protocol

Examples

The following image illustrates the available containertype values:

bottom etched raised lowered tabpage

~100 —100 —100 - 100 —100

-0 -0 =0

~ ~ ~
~ > -

Figure 62 — containertype examples

90 e ogScript Reference DashBoard CustomPanel Development Guide

openGear Style Hints

openGear Style Hints provide something similar to an inline style CSS attribute in HTML. For certain
components, they can be used to specify a background color, foreground color, border, and icon. The

hints can be provided inside OGLML tags or via parameter choice constraint values.

Syntax

To specify a style hint inside an OGLML tag, the style attribute is used:

<component style="style-hint;style-hint;...

To specify a style hint within a parameter choice constraint, the style tag is inserted at the end of the

;" component attributes>

constraint value, enclosed in angle brackets (< >). In order to represent the angle brackets in the

OGLML document, they must use standard XML escape sequences (s¢1t; s>). Specifying hints

within the constraint value allows different styles to be applied to each choice.

<constraint key="key">value<style-tag;style-tag;...

></constraint>

Note

Style hints may be specified in either the OGLML style attribute or within the constraint

value, but not both.

For clarity, this document will provide examples using the OGLML style attribute only, however the

style hints may be utilized within constraints unless specifically mentioned.

Style Hint Reference

The following style hints are supported:

Tag
#color-value
bdr:border-style

bdr#color-value

ba#color-value

Description
Sets the component background color.
Sets the component border style.
Sets the component border color.

Sets the component background color.

bg-align:value Sets the alignment of a background image.
bg-fill:value Controls how a background image is sized.

bg-u:image-url
di:none
di-eo:external-oid

di-u:image-URL

Sets a container background to image located at a specified URL.
Removes a component drag icon.
Sets a component drag icon to image encapsulated in an external OID.

Sets a component drag icon to image located at a specified URL.

f:style-hint Style modifier when button value is false.
fa#color-value Sets the component foreground color.
font:font-type Sets the font type.

grid#color-value Sets the table gridline color.

hi:none Removes a component hover icon.

hi-eo:external-oid
hi-u: image-URL
i:none

i-eo:external-oid

Sets a component hover icon to image encapsulated in an external OID.
Sets a component hover icon to image located at a specified URL.
Removes a component icon.

Sets a component icon to image encapsulated in an external OID.

i-u: image-URL Sets a component icon to image located at a specified URL.
m:t.l.b,r Sets insets around the label of a button.

o#tcolor-value

Sets the text outline color.

DashBoard CustomPanel Development Guide

ogScript Reference o 91

Tag Description

size:font-size Sets the text font size.

style:style-id Applies style hints defined within a style tag.
t:style-hint Style modifier when button value is true.
tt:tool-tip-string Sets a tooltip for a label or button.
txt-align:alignment Sets the alignment of text.

style Style Hint

User styles may be created within an OGLML document to allow standardized formatting to be applied
to multiple components. Styles are defined using the style tag. A predefined style may be referenced
by a component as part of its style attribute. Additional style hints may be included in the same style
attribute string. If the style string explicitly specifies a hint which contradicts a hint in the predfined
style, the explicitly added hint shall supersede.

Style Hint Values Restrictions Description

style:style-id String The style with the Apply the style hints of the style defined
provided ID must in a different set of style hints. See style
be defined inan tag documentation for more information.
OGLML
document at a
higher scope than
where it is
referenced.

92 e ogScript Reference DashBoard CustomPanel Development Guide

Examples

The following example applies button style hints as defined in the predefined style
CommandButtonStyle. Note that the “Stop” button has an additional hint applied (size:big), and
overrides the background color (bg#££0000).

<style id="ButtonStyle" value="bg#808000;bdr:etched;"/>

<button name="Start" style="style:ButtonStyle;"/>

<button name="Stop" style="style:ButtonStyle;size:big;bg#f£f0000;"/>
<button name="Reset" style="style:ButtonStyle;"/>

Component Color

Start Stop

Reset

Figure 63 - Style Tag Example

The foreground, background and border colors of components may be specified. It is often a good idea
to override the background and foreground as a pair to avoid the possibility of the background and

foreground being the same (or similar) colors in the UI.

Style Hint

#color-value
or
bg#color-value

fg#color-value

bdr#color-value

o#color-value

grid#color-value

Values

#RRGGBB
or
#color-constant
or

#RRGGBBAA

#RRGGBB
or
#color-constant
or

#RRGGBBAA

#RRGGBB
or
#color-constant
or
#RRGGBBAA

#RRGGBB
or
#color-constant
or
#RRGGBBAA

#RRGGBB
or
#color-constant
or
#RRGGBBAA

Restrictions

Applies to table
container only.

Description

Set the background color of the
component.

Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

Set the foreground color of the
component.

Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

Create a line border around the
component with the specified color.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

Create an outline around the text within
a component with the specified color.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

Specifies the color of the gridlines for a
table container.

Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

DashBoard CustomPanel Development Guide

ogScript Reference ¢ 93

Example

The following style tag creates a label using the predefined background #panelbg and the foreground
(text) in orange.

<label name="Label" style="bg#panelbg; fg#FFC000;"/>

Predefined Colors

DashBoard defines color constants, which make up the standard color scheme. Color constants are the
default colors that are used when you build CustomPanels in DashBoard. These colors are used in the
standard controls within DashBoard, but may be applied to the background, foreground or border color
style tag of any component. Custom color constants may be defined within an OGLML document using
the color tag.

Color constants can be used anywhere in your code in the place of actual values. You can add them in
the GUI using the drop-down color palettes available in the Style tab of the Component Editor.

The following image illustrates the pre-defined color constants in the color palette:

Background Color: 3§ | blue

® Hue

Saturation

Figure 64 - Predefined color constants

Simply hover your mouse over a color palette color to see the intended standard control usage for the
color constant. In the following image you can see the selectedmuted color constant identified below:

tedmuted

Using the recommended DashBoard color scheme ensures that
e You are applying colors consistently throughout your UL

e You are saving time, because you won’t need to customize the style of each standard control
that you add.

e Your panels will stay current with any new DashBoard color constant changes.

DashBoard defines the following color constants:

Color Constant Color Sample Description

#panelbg . Panel background color.

#panelfg Panel foreground color for a basic control or button.
#selectbg . Background color for a toggle button that is selected.

94 e ogScript Reference DashBoard CustomPanel Development Guide

Color Constant

#selectedmuted

#buttonbg

#tableheader

#tablezebra

#readonlyborder

#listbg

#tabbg

#textbg

#lightdivider

#darkdivider

#modaloverlay

#timerfg

#red

#orange

#yellow

#green

#teal

#blue

#purple

#pink

#transparent

#user-defined-color

Color Sample Description
Color for a mute button that is selected.

Background color for a button.

Color for a table header.

Secondary color for table rows.

Color for a read-only border.

Background color for a list.

Background color for a selected tab.

Color for background for text.

Color of a light divider.

Color of a dark divider.

Color for a modal overlay.

Foreground color for a timer.

Red.

Orange.

Yellow.

Green.

Teal.

Blue.

Purple.

Pink.

No fill; the element will be transparent.

Color defined by the user using the color tag.

DashBoard CustomPanel Development Guide

ogScript Reference ¢ 95

Border Styles

The style of a component border may be specified with the bdr hint. If the border hint is not specified, a
simple line will be drawn for the control border.

Note: The containertype attribute, if specified for a component, will override the bdr style hint.
Style Hint Values Restrictions Description
bdr:border-style none Removes the border from the
component.
etched Create an etched border around the
component.
shadow Creates a drop shadow under the
component.
bdr#color-value Sets border color; see Component Color Section.
grid#color-value Sets grid color in a table; see Component Color Section.
Examples

The following image illustrates the border style hint:

Figure 65 - Border style

Text/Font Styles
The following style hints modify the rendering of text in a component.
Style Hint Values Restrictions Description

size:font-size Integer size Set the font size for the component.
smaller Number specifies a font size in points
small (1/727).
normal smaller corresponds to 2/3 normal size.
big biggest corresponds to 4x normal size.
bigger See examples below.
biggest

font:font-type default Set the control font to the default font, a
bold bold font, or a mono-spaced font.
mono

txt-align:alignment center Controls the position of text within a
north button or label control.
northeast N
east w E
southeast
south S
southwest
west
northwest

fg#color-value Sets text foreground color; see Component Color Section.

o#color-value Sets text outline color; see Component Color Section.

96 e ogScript Reference DashBoard CustomPanel Development Guide

Examples

The following image illustrates the size style

- nomal big bigger blggeSt

Figure 66 - size style attribute

The following image illustrates the font style:

Icon Styles

bol m
abc 123 abc 123 abc 123

Figure 67 - font style attribute

Icon styles may be applied to label and button components. DashBoard allows separate icons to be
defined for the default icon, the icon when a mouse hovers over the control, and the icon when the
control is dragged (if dragging is enabled on the component).

Icon Styles have no effect on buttons with the flat attribute.

Style Hint
i-eo:external-oid

i-u: image-URL

i:none

di-eo:external-oid

di-u:image-URL

di:none

hi-eo:external-oid

hi-u: image-URL

hi:none

Example

Values
External OID

URL String

External OID

URL String

External OID

URL String

Restrictions

External OID
specified must be
type 0x03.

Full qualified URL
to PNG, GIF or
JPG image.

External OID
specified must be
type 0x03.

Full qualified URL
to PNG, GIF or
JPG image.

External OID
specified must be
type 0x03.

Full qualified URL
to PNG, GIF or
JPG image.

Description

Set the icon for the component (applies
to labels and buttons).

Set the icon for the component. (applies
to labels and buttons)

Remove the icon for the component.

Set the drag icon for the component
(only applies if “dragvalue” attribute is
used).

Set the drag icon for the component
(only applies if “dragvalue” attribute is
used)

Remove the drag icon for the
component.

Set the hover icon for the component
(applies to buttons)

Set the hover icon for the component
(applies to buttons)

Remove the hover icon for the
component.

<button buttontype="push" style="i-u:http://my-server/RossLogo.jpg;hi-
u:http://my-server/DashBoardLogo.jpg;" />

DashBoard CustomPanel Development Guide

ogScript Reference ¢ 97

CONNECT

st

Figure 68 — Background and Hover Icon

Tooltip Style

Tooltip may be added to components. Balloon help text will be displayed when the mouse hovers over
the component.

Style Hint Values Restrictions Description

tt:tool-tip-string String May only be Set the tooltip of the component to the
applied to label specified String. A “;” can be inserted
and buttons. into the string by inserting the escape

sequence “\;”.

Example

<button name="Tooltip" style="tt:This is the tooltip text" />

Figure 69 — Tooltip Style

Inset Style

Insets provide a margin from the edge of a component to the text or icon content.

Style Hint Values Restrictions Description
m:top,left,bottom, 4 Integers This hint can only = Sets the margins around the label of the
right be applied to button. The margins are specified in
button widgets. pixels.

Background Styles

Background styles allow images to be placed in the background of container components.

Style Hint Values Restrictions Description
bg-u:image-url URL String Must be a fully Set the background image of the
qualified URL. component.
bg-fill:value none Do not scale the image.
both Stretch the image to the width/height of
the control.
horizontal Scale the image to the width of the

control (maintain aspect ratio).

vertical Scale the image to the height of the
control (maintain aspect ratio).

98 e ogScript Reference DashBoard CustomPanel Development Guide

Style Hint Values Restrictions Description

fit Scale the image to the largest size that
will fit inside of the control (maintain
aspect ratio).

crop Scale the image to fill the control
maintaining the aspect ratio. Crop the
image to remove the parts that don't fit.

tile Tile the image (starting at the upper left)
to fill the background of the control.

paint9 Divide the image into 9 areas (defined
with Background Insets) to define fixed
corners, vertically or horizontally
stretched sides, and a stretched center.

bg-align:value center If the fill is set to anything other than
north “both” or “tile”, this controls where the
northeast background is positioned in the
component.
east N
southeast
south w E
southwest
S
west
northwest

Button Style Modifiers

All style options can be overridden for toggle and radio buttons, such that the style of the widget is
determined by the value of the backing parameter. For toggle buttons, the style can be specified for the
true state (button toggled down) and false state (button toggled up). For radio buttons, the style can be
specified for each choice for the true state (choice selected) and false state (choice not selected).

DashBoard CustomPanel Development Guide ogScript Reference ¢ 99

Syntax
<component style="t:true-style-hint;f:false-style-hint;...;" >
Hint Modifier Values Restrictions Description

t:true-style-hint Valid style hint Applies the style hint only when the
choice is true.

f:false-style-hint Valid style hint Applies the style hint only when the
choice is false.

Examples

The following example creates a toggle button whose color is green when true (toggled down) and red
when false (toggled up):

<param 0id="0x7" style="t:bg#00ff00;f:bg#ff0000;" widget="13"/>

Figure 70 - Toggle Button Style Modifier

The following example changes the font size to big for the selected radio button:

<param 0id="0x6" style="t:size:big;f:size:normal;" widget="9"/>

* Yellow Red Green

Figure 71 — Radio Button Style Modifier

Layout/Container Tags

Container tags define regions of the layout which contain other elements. Containers control how the
child elements are presented within DashBoard. Container tags accept attributes which impact the
container as a whole, and may also specify additional attributes which may be applied to child elements;
these define how the elements are displayed within the container. Containers may be nested.

The following containers are supported:

Tag Description
abs Allows elements to be placed in absolute positions
borderlayout Creates a border layout that maintains proportions of components

anchored to the border edges or center when resized, and offers the
option to set one component to grow in relation to the other components

flow Aligns elements in a horizontal row

pager Creates a pager control component that is customizable using script
popup Presents child elements in a popup window

simplegrid Creates a grid of fixed-size rows and columns

split Creates a draggable split screen with 2 components

tab Creates a tabbed page

table Creates a grid of rows and columns

100 « ogScript Reference DashBoard CustomPanel Development Guide

abs

Use absolute positioning and sizing for components inside of the abs tag. The sizing and positioning of
child components must be specified as attributes of those child components.

Syntax

<abs container attributes>
<component child component attributes> </component>

<component child component attributes> </component>

</abs>

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <abs> tag:

Attribute Values Restrictions Description

virtualwidth Integer Defines a virtual width and height to use
irtualheiaht Int for all coordinates inside of the

virtualheig nteger container. All offsets and dimensions

inside of the container are scaled based
on current width/height vs.
virtualwidth/virtualheight.

When these attributes are used, the Ul
will scale as the container ize changes.

subscriptions String When set to subscriptions="true", this
flag indicates support for openGear
Protocol (OGP) JSON devices that have
implemented both minimal mode and
subscription protocol. The minimal mode
protocol provides the foundation for the
subscription protocol.

See the subscriptions entry for more
details.

Child Component Attributes

In addition to General Attributes, the following attributes may be specified to child components:

Attribute Values Restrictions Description
left Integer Defines the distance between the left
edge of the abs and the component.

When combined with right it will force
the component to fill the available area.

right Integer Defines the distance between the right
edge of the abs and the control.
When combined with left, it will force the
component to fill the available area.

top Integer Defines the distance between the top
edge of the abs and the control.
When combined with bottom, it will force
the component to fill the available area.

bottom Integer Defines the distance between the bottom
edge of the abs and the control.
When combined with top, it will force the
component to fill the available area.

DashBoard CustomPanel Development Guide ogScript Reference o 101

Attribute Values Restrictions Description

width Integer Ignored if both Defines the width of the control. If
left and right are undefined, the control’s calculated
specified. preferred size will be used.

height Integer Ignored if both Defines the height of the control. If
top and bottom undefined, the control’s calculated
are specified. preferred size will be used.

virtualwidth and virtualheight

If the virtualheight and virtualwidth attributes are not set, components within the abs container will be
displayed in their specified size. Resizing the abs container will not scale the child components. If the
abs area does not encompass the area required for the specified components, the components will be
cropped.

If virtualheight and virtualwidth attributes are set, component size and position within the abs container
are scaled according to:

abs width)

component display width = component width X (abs Dirtualwidth

abs height)

component display height = component height X <abs virtualheight

Examples

The following example creates an abs container with 4 buttons placed in a 2x2 grid. The buttons will not
scale if the abs is resized (they will be cropped):
<abs left="16" top="16" width="250" height="250">
<button left="5" top="5" width="100" height="100" name="1"/>
<button left="110" top="5" width="100" height="100" name="2"/>
<button left="5" top="110" width="100" height="100" name="3"/>
<putton left="110" top="110" width="100" height="100" name="4"/>
</abs>

The following example creates an abs container with 4 buttons placed in a 2x2 grid. The buttons will
scale if the abs is resized:

<abs left="16" top="16" width="250" height="250" virtualwidth="250"
virtualheight="250">
<pbutton left="5" top="5" width="100" height="100" name="1"/>
<pbutton left="110" top="5" width="100" height="100" name="2"/>
<button left="5" top="110" width="100" height="100" name="3"/>
<button left="110" top="110" width="100" height="100" name="4"/>
</abs>

In the following example, the 2x2 grid will be scaled to half its original size. All buttons will appear
50x50 pixels in size:

<abs left="16" top="16" width="125" height="125" virtualwidth="250"
virtualheight="250">
<button left="5" top="5" width="100" height="100" name="1"/>
<button left="110" top="5" width="100" height="100" name="2"/>
<button left="5" top="110" width="100" height="100" name="3"/>
<button left="110" top="110" width="100" height="100" name="4"/>
</abs>

102 e ogScript Reference DashBoard CustomPanel Development Guide

borderlayout

You can use the border layout tool to create an area on a CustomPanel that you can anchor components
to and later resize to maintain your intended layout. You can use a border layout to anchor components
against any of the four borders of the container and in the center. It is useful for adding menus along the
border edge of a CustomPanel, or to group components within a CustomPanel. A border layout must
have more than one component, because it is designed to responsively resize multiple objects contained
within its borders. Typically, you can have a component anchored to each side, and then a fifth central
component. Any component could also be a basic canvas containing other components.

If you want one of the anchored components to grow when the container is resized, you can set the
border layout's Growth Quadrant to match the component area you'd like to grow (top, right, bottom,
left, or center). You can only set a single growth quadrant. The areas that aren't in the growth quadrant
will be adjusted when you resize the border layout container. The components anchored to the top or
bottom will keep the same height, while the width expands or minimizes to match the container size.
The components anchored to the right or left will keep the same width, while the height expands or
minimizes to match the container size.

If a Growth Quadrant is not specified in the GUI, the [default] border layout will maintain certain
proportions of the side components, and the central component will grow when resized. For the top and
bottom sides, the height is maintained, and the width will fill the container as it is resized. For the left or
right sides, the width is maintained, and the height will fill the container as it is resized.

Use absolute positioning and sizing for components inside of the borderlayout tag. The sizing and
positioning of child components must be specified as attributes of those child components. Child
components are resized based on the specified growth quadrant.

Note: In the child component attributes you must include an anchor that is set to Top, Bottom, Right,
Left or Center to specify the side that the component is anchored to. In the source code the anchors are
north, south, east, west or center.

For more details, see the DashBoard User Guide.

You can see an example of a border layout with labels used as the anchored components below:

Top Content

| Left Content Center Content Right Content

Bottom Content

Syntax

<borderlayout container attributes>
<component child component attributes> </component>
<component child component attributes> </component>

</abs>

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <borderlayout>
tag:

DashBoard CustomPanel Development Guide ogScript Reference e 103

Attribute
grow

Child Component Attributes

Values
String

Restrictions

In the GUI, the
growth quadrant
must be set to
Value must be set
to [default],
Center, Top,
Bottom, Left or
Right.

In the source code,

the value must be
set to north,
south, east,
west or center.

Description

This attribute determines which of the
anchored components will grow when
the border layout is resized responsively.

This attribute impacts how the width and
height of the child components will
behave when the border layout is
resized responsively.

Note: If this attribute is not defined, then
by default the center component is the
only one that will grow when resized.
Any components on the border will
responsively resize as follows:

e north or south - For the top
and bottom sides, the height is
maintained, and the width will
fill the container as it is resized.

e east or west - For the left or
right sides, the width is
maintained, and the height will
fill the container as it is resized.

Note: If set to [default] in the GUI, then
the grow attribute will not appear in the
source code, but by default the behavior
is the same as grow="center".

In addition to General Attributes, the following attributes may be specified to child components:

Attribute
anchor

Values
String

Restrictions

In the GUI, the

value must be set
to Top, Bottom,
Left and Right.

In the source
code, the values
are shown as
north, south,
east, west or
center.

Description

Defines the border side which the
component will be anchored to.

104 « ogScript Reference

DashBoard CustomPanel Development Guide

Attribute
width

Restrictions

Note: For certain
components, you

Values
Integer

Description

Defines the width of the component. This
is impacted by the growth attribute.

must include this
attribute for the
component to
appear.

With labels or
buttons, you don't
need to include a
defined width as
the text will
determine the
width. With
<abs/> containers
the width is
required for the
component to
appear on the
canvas.

height Note: For certain
components, you
must include this
attribute for the
component to

appear.

Integer Defines the height of the component.

This is impacted by the growth attribute.

With labels or
buttons, you don't
need to include a
defined height as
the text will
determine the
height. With
<abs/> containers
the height is
required for the
component to
appear on the
canvas.

Example

The following example creates a border layout that is set to grow='north', the label image is set to
anchor="north', and the table is set to anchor='center'. The figure below shows the border layout before
and after being resized. You can see that when the border layout is resized, the label image grows north,
and that the table remains centered, and became shorter to accommodate the label image's growth.

DashBoard CustomPanel Development Guide ogScript Reference e 105

<borderlayout grow="north" height="480" style="bdr:etched;" width="220">

<label anchor="north" height="40" style="bg#dark;bg-u:cd-3.Jjpg;bg-
fill:fit;" width="6"/>

<param anchor="center" expand="true" height="70" oid="params.table"
showlabel="false" width="250"/>

</borderlayout>

For more information and an expanded example, see the DashBoard User Guide.

flow
Arrange controls horizontally across the page. Wrap the controls vertically if there is not enough space
to show all controls on a single row.
Syntax
<flow container attributes>
<component component attributes> </component>
<component component attributes> </component>
<component component attributes> </component>
</flow>
Container Attributes
In addition to General Attributes, the following attributes may be specified:
Attribute Values Restrictions Description
anchor center Defines the alignment of the controls
east
west w E

Default values shown in bold.

Child Component Attributes

See General Attributes. There are no additional attributes for child components.

Example

The following example places 6 buttons in a horizontal row, aligned to the left edge of the flow

106 e ogScript Reference DashBoard CustomPanel Development Guide

container.

<flow height="200" left="16" top="16" width="1000">
<button buttontype="push" height="126" name="1" width="126"/>
<button buttontype="push" height="126" name="2" width="126"/>
<button buttontype="push" height="126" name="3" width="126"/>
<button buttontype="push" height="126" name="4" width="126"/>
<button buttontype="push" height="126" name="5" width="126"/>
<button buttontype="push" height="126" name="6" width="126"/>

</flow>

popup

Creates a button that, when clicked, displays a balloon dialog containing the component. Popup groups
may be defined. Only one popup from each group is displayed at a time, however popups from different
groups may be displayed simultaneously.

Note: It is an error to put more than 1 component tag under a popup tag.

Syntax

<popup container attributes>
<component child component attributes> </component>

</popup>

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <popup> tag:

Attribute Values Restrictions Description

name String The name to display on the button to
trigger the popup.

group String The group attribute is used to define
different groups that can be open at the
same time. If this attribute is not
defined, the popup is not a part of any
group.

Child Component Attributes

In addition to General Attributes, the following attributes must be specified to child components:

Attribute Values Restrictions Description
width Integer Required Width of the container inside the popup
height Integer Required Height of the container inside the popup
Example

The following example creates a popup triggered by a button labelled “Selector”. The popup contains an
abs container with 4 buttons placed in a 2x2 grid.
<popup name="Selector">
<abs height="100" width="100">
<button left="0" top="0" width="50" height="50" name="1"/>
<button left="50" top="0" width="50" height="50" name="2"/>
<button left="0" top="50" width="50" height="50" name="3"/>
<button left="50" top="50" width="50" height="50" name="4"/>
</abs>

DashBoard CustomPanel Development Guide ogScript Reference e 107

</popup>

Selector X

Figure 72 — Popup

pager
Creates a pager control component that is customizable using script. It is not currently available in the
GUI. The pager control is built into an <abs> absolute container, and the abs container attributes can be
used.

Syntax

For more information on creating a pager control using scripting, see the DashBoard User Guide.

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <pagercontrol>

tag:
Attribute Values Restrictions Description
virtualwidth Integer Defines a virtual width and height to use

for all coordinates inside of the
container. All offsets and dimensions
inside of the container are scaled based
virtualheight Integer on current width/height vs.
virtualwidth/virtualheight.

When these attributes are used, the Ul
will scale as the container size changes.

Example

The following example creates a horizontal pager control.

<abs contexttype="opengear" id=" top" keepalive="true">

<pager height="224" left="13"
style="look:round;bg#923030;bdr:thick;bdr#000000;" top="13" width="567">

<config key="w.orientation">horizontal</config>
<config key="w.model">var model = {

currentPage: 1,

getNumPages: function()

{

108 e ogScript Reference DashBoard CustomPanel Development Guide

return 5;
by
getCurrentPage: function()
{
return this.currentPage;
}y
scrollToPage: function (pageNum)
{
this.currentPage = pageNum;

ogscript.reveal ('page-' + pageNum) ;

}
model</config>
<tab tabposition="none">
<abs id="page-0"/>
<abs id="page-1">
<label height="58" left="143" name="PagelLabel" style="txt-
align:west" top="58" width="161"/>

</abs>
<abs id="page-2">

<button buttontype="push" height="65" left="185"
name="Page2Label" top="50" width="182"/>

</abs>
<abs id="page-3"/>
<abs id="page-4"/>
<abs id="page-5"/>
</tab>
</pager>
</abs>

simplegrid

Creates a grid of fixed-sized cells. All cells in a simplegrid control are of the same size. Child
components are laid out left-to-right, top-down and are sized to fill the cell. If more control over layout
is required, the table container should be used instead.

Syntax

<simplegrid container attributes>
<component component attributes> </component>
<component component attributes> </component>

<component component attributes> </component>
</simplegrid>

Container Attributes

In addition to General Attributes, the following attributes may be specified:

Attribute Values Restrictions Description
rows Integer Specifies the number of rows in the grid
cols Integer Specified the number of columns in the grid

DashBoard CustomPanel Development Guide ogScript Reference e 109

Child Component Attributes

See General Attributes. There are no additional attributes for child components.

Example

The following example creates a 2 row x 3 column grid, with buttons 1, 2, 3 on the top row and buttons
4, 5, 6 on the bottom row. Each cell is 100x100 pixels.
<simplegrid left="16" top="16" height="200" width="300" rows="2" cols="3">
<button buttontype="push" name="1"/>
<button buttontype="push" name="2"/>
<button buttontype="push" name="3"/>
<button buttontype="push" name="4"/>
<button buttontype="push" name="5"/>
<button buttontype="push" name="6"/>
</simplegrid>

split
Creates a split screen with exactly two components. The split is either horizontal (with a left component
and a right component, separated by a vertical split bar) or vertical (with a top component and a bottom
component separated by a horizontal split bar). If only one component is defined under the split tag,
the split is removed and the single component is returned.

Note: It is an error to put more than 2 component tags under a split tag.

Syntax

<split container attributes>
<component child component attributes> </component>
<component child component attributes> </component>
</split>

110 e ogScript Reference DashBoard CustomPanel Development Guide

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <split> tag:

Attribute Values Restrictions Description

orientation horizontal The first component will be on the left and
the second component will be on the right.

vertical The first component will be on the top and
the second component will be on the bottom.

Default values shown in bold.

Child Component Attributes

In addition to General Attributes, the following attributes may be specified to child components:

Attribute Values Restrictions Description
weight Double value Specifies how much of the screen should
between +0.0 be devoted to each side of the split.
and 1.0 If the weight is defined for both

components, the split is determined by
weight / total weight.

minw Positive integer The minimum width of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

minh Positive integer The minimum height of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

maxw Positive integer The maximum width of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

maxh Positive integer The maximum height of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

Example

The following example creates a split container with a horizontal split:
e Left side contains an abs container with 4 buttons placed in a 2x2 grid.

e Right side contains an abs container with 4 buttons placed in a 2x2 grid.

<split height="150" width="300" orientation="horizontal">
<abs weight="0.5" height="100" width="100">
<pbutton left="5" top="5" width="25" height="25" name="1"/>
<button left="30" top="5" width="25" height="25" name="2"/>
<button left="5" top="30" width="25" height="25" name="3"/>
<button left="30" top="30" width="25" height="25" name="4"/>
</abs>
<abs weight="0.5" height="100" width="100">
<pbutton left="5" top="5" width="25" height="25" name="5"/>
<button left="30" top="5" width="25" height="25" name="6"/>
<button left="5" top="30" width="25" height="25" name="7"/>
<button left="30" top="30" width="25" height="25" name="8"/>
</abs>
</split>

DashBoard CustomPanel Development Guide ogScript Reference o 111

tab

Creates a tab component where each child component within the tab tag represents a separate tab page
inside of the tab component. Note that the height and width attributes of a tab component include the
space occupied by the tab labels, not just the size of child components.

Syntax

<tab container attributes>

<component for tab 1 child component attributes> </component>

<component for tab 2 child component attributes> </component>

</tab>

Container Attributes

In addition to General Attributes, the following attributes may be specified to the <tab> tag:

Attribute Values
tabposition north
east
south
west
none
none
tablayout scroll
stack
tabheight Integer
onchange ogScript String
delay Boolean

Default values shown in bold.

Child Component Attributes

Restrictions

How the tabs are
rendered within
their quadrant is
determined by
the look and feel.

Tab will not
resize below
minimum size to
render tab label
text

Description
Specifies the placement of the tabs.
N
w E
S

Tabs will be hidden and the visible
component must be controlled through
the “reveal” tag or the OGP
REVEAL_ELEMENT trap.

If there are more tabs than can fit in the
horizontal space available, this controls
whether there are multiple rows of tabs
(“stack”) or if additional tabs are on the
same row and accessible via scrolling
(“scroll”).

Specifies the height of the tab label, in
pixels. Note that the width of the tab is
determined by the length of the tab label
names.

The provided snippet of ogScript is
triggered when the selected tab
changes.

Current tab index is:
this.getSelectedindex()

Current tab name is:
this.getTitleAt(this.getSelectedindex()
)

When set to “true,” the contents of the
tab will load only when the tab is
selected.

In addition to General Attributes, the following attributes may be specified to child components:

112 e ogScript Reference

DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description

name String This attribute is Specifies (or overrides) the name to
used in elements display in the tab for a component. If the
contained within component provides its own name (e.g.
a tab tag. an OGP Menu), that name will be used
in the absence of this attribute.

selected default This attribute is default = this tab will be selected by
forced used in elements default when the Ul is loaded.
none contained within forced = this tab will be selected by
a tab tag. default when the Ul is loaded and, if the
Ul is refreshed, this tab will be selected
again.

none = when the Ul is loaded, the first
tab in the tab group is selected. If the Ul
is refreshed, DashBoard should attempt
to maintain the current tab selection.

Default values shown in bold.
Example

The following example creates a tab container with three tabs:
e First tab contains an abs container with 4 buttons placed in a 2x2 grid.
e Second tab contains an abs container with 4 buttons placed in a 2x2 grid.
e Third tab contains a single button
<tab width="250" height="300" left="1" tabposition="north" top="1">
<abs height="300" width="250" name="First Tab">
<button left="5" top="5" width="25" height="25" name="1"/>
<button left="30" top="5" width="25" height="25" name="2"/>
<button left="5" top="30" width="25" height="25" name="3"/>
<button left="30" top="30" width="25" height="25" name="4"/>
</abs>
<abs height="250" width="250" name="Second Tab">
<pbutton left="5" top="5" width="25" height="25" name="5"/>
<pbutton left="30" top="5" width="25" height="25" name="6"/>
<pbutton left="5" top="30" width="25" height="25" name="7"/>
<pbutton left="30" top="30" width="25" height="25" name="8"/>
</abs>
<button name="Go"/>
</tab>

table

A table is a grid of rows and columns. A cell in the table can span any number of rows or columns.
Each cell in a table contains a component defined in a child tag. Similar to HTML, each row of cells in
a table must be encapsulated in a tr tag. Each element inside of a tr tag defines a component to be
placed inside a cell. For simple grids with fixed-sized cells, the simplegrid container may be used
instead.

DashBoard CustomPanel Development Guide ogScript Reference o 113

Syntax
<table container attributes>
<tr>
<component child component attributes> </component>

<component child component attributes> </component>

</tr>
<tr>
<component child component attributes> </component>

<component child component attributes> </component>

</tr>
</table>
Child Tags
Tag Values Restrictions Description
<tr> Encapsulates a row.
<component> Any valid Defines the component for a table cell.

component tag Must be a child of a tr tag.

Container Attributes

See General Attributes.

Child Component Attributes

The following set of attributes controls the layout of cells and components. To control the appearance of
the table contents, these additional attributes should be defined in the child tags that define the content
of the table cells.

Attribute Values Restrictions Description
fill Controls how the component inside of a
table cell fills the cell itself.
none Uses the component’s natural width and
height and floats it inside of the cell.
Horizontal Uses the component’s natural height but
fills the horizontal space.
Vertical Uses the component’s natural width but
fills the vertical space.
both Ignores the component’s natural width
and fills the entire cell.
anchor center If the fill is set to anything other than
north both, this controls where the component
northeast is attached to the cell.
N
east
southeast w E
south
southwest S
west
northwest
rowspan Positive integer Cells must not The number of rows spanned by a cell.
collide

114 o ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description

colspan Positive integer Cells must not The number of columns spanned by a
collide cell.

insets 4 positive Specifies padding around the
integers component. The 4 numbers represent
separated by the top, left, bottom, and right padding.
commas. The insets are specified in pixels.
e.g. “5,5,5,5”

weightx Double value Specifies how to distribute extra
between +0.0 horizontal space.
and 1.0

The table calculates the weight of a
column to be the maximum weightx of
all the components in a column. If the
resulting layout is smaller horizontally
than the area it needs to fill, the extra
space is distributed to each column in
proportion to its weight. A column that
has a weight of zero receives no extra
space.

If all the weights are zero, all the extra
space appears between the grids of the
cell and the left and right edges.

weighty Double value Specifies how to distribute extra vertical
between +0.0 space.
and 1.0

The table calculates the weight of a row
to be the maximum weighty of all the
components in a row. If the resulting
layout is smaller vertically than the area
it needs to fill, the extra space is
distributed to each row in proportion to
its weight. A row that has a weight of
zero receives no extra space.

If all the weights are zero, all the extra
space appears between the grids of the
cell and the top and bottom edges.

orientation horizontal Only applies to If a tag returns multiple components (e.g.
vertical element tags that a param tag for an array parameter), this
return multiple specifies whether the returned
components. components should be in the same row
(horizontal) or in the same column
(vertical).
minw Positive integer The minimum width of the component in

pixels. This is considered a hint and
may or may not be honored by
DashBoard.

minh Positive integer The minimum height of the component in
pixels. This is considered a hint and
may or may not be honored by
DashBoard.

maxw Positive integer The maximum width of the component in
pixels. This is considered a hint and
may or may not be honored by
DashBoard.

DashBoard CustomPanel Development Guide ogScript Reference e 115

Attribute

maxh

Values Restrictions

Positive integer

Description

The maximum height of the component
in pixels. This is considered a hint and
may or may not be honored by
DashBoard.

placeholders Positive integer

Default 0

This tag specifies the minimum number
of elements which are expected to be
returned by a tag. If a tag returns fewer
than the specified number of elements,
placeholder elements are created and
added to the layout in their place.

A value of 0 means that the tag is
ignored if no elements were returned (or
the tag is undefined).

A value > 0 defines the maximum
number of elements in a row. Additional
elements will be placed on the next row.

maxperrow Positive integer

Default -1

Default values shown in bold.

Note: DashBoard uses a Java Swing GridBagLayout internally. For more information about
GridBagLayout, please see

http://docs.oracle.com/javase/8/docs/api/java/awt/GridBaglLayout.html|

Example

The following sample utilizes a table to create a numeric keypad.
<table height="300" left="16" top="16" width="300">

<tr>
<button buttontype="push" fill="both" name="1"> </button>
<button buttontype="push" fill="both" name="2"> </button>
<button buttontype="push" fill="both" name="3"> </button>
</tr>
<tr>
<button buttontype="push" fill="both" name="4"> </button>
<button buttontype="push" fill="both" name="5"> </button>
<button buttontype="push" fill="both" name="6"> </button>
</tr>
<tr>
<button buttontype="push" fill="both" name="7"> </button>
<button buttontype="push" fill="both" name="8"> </button>
<button buttontype="push" fill="both" name="9"> </button>
</tr>
<tr>
<button buttontype="push" fill="both" name="*"> </button>
<button buttontype="push" fill="both" name="0"> </button>
<button buttontype="push" fill="both" name="#"> </button>
</tr>
</table>

Top Level Attributes

Top level attributes can be added to any of the container tags listed in the Layout/Container Tags, but
only if that container is the uppermost container in the source code. The source code can be found when
you enter PanelBuilder Edit Mode, and double-click on an empty spot of the canvas. This opens the

116 e ogScript Reference DashBoard CustomPanel Development Guide

http://docs.oracle.com/javase/8/docs/api/java/awt/GridBagLayout.html

Component Editor, with the uppermost container selected in the tree view (typically an <abs>
container in a new CustomPanel file). You can add the top level attributes in the uppermost container.

The following top level attributes are supported:

Attribute Description

editlock Allows a panel to be protected with a user-defined defined password.
When a user tries to enter Panel Builder Edit Mode, the password prompt
will appear requesting the credentials.

encrypt Encrypts a panel to protect the source code.
gridsize Allows you to snap components to the grid backdrop when in

PanelBuilder Edit Mode. You can organize and automatically line up
components on the screen along the provided horizontal and vertical grid
lines.

keepalive When set to true, this flag prevents panels from being unloaded by the
memory manager. When set to false, if this panel is inactive and
DashBoard runs low on memory it can be unloaded.

editlock

Defines the password that will protect a panel from tampering. The editlock value can be any user-
defined string. When editlock is set, a password popup will appear when a user attempts to enter
PanelBuilder Edit Mode.

Edit Locked >

Please provide editing password

oK Cancel

To set an editlock password, enter PanelBuilder Edit mode, and double-click on an empty area of the
canvas. The Component Editor will open with the uppermost <abs> selected in the tree view. Click the
Source tab, and edit the top line of code to include editlock = "<password>".

Warning: Anyone can open the panel .grid file in any text editor and view the password, unless your
panel is encrypted. For more details on how to encrypt your panel see, encrypt.

You can see an example below with the password set to RossVideo12345.

Syntax
<abs contexttype="opengear" id=" top" editlock="RossVideol2345" style="">

</abs>

encrypt

This allows you to encrypt a panel so that the source code cannot be viewed. It is recommended to
encrypt passwords when using the editlock attribute. To encrypt a panel so that the source code cannot
be viewed, add encrypt="SimpleEncrypt" to the uppermost <abs>. The editlock tag must be set to
"SimpleEncrypt".

Warning: make sure to use the correct capitalization, as setting encrypt to any other value may break
your panel!

You can see an example below using the encrypt tag.

DashBoard CustomPanel Development Guide ogScript Reference o 117

Syntax
<abs contexttype="opengear" id=" top" encrypt="SimpleEncrypt" style="">

</abs>

gridsize

This Snap to Grid feature allows you to snap components to the grid backdrop when in PanelBuilder
Edit Mode. You can organize and automatically snap components to the nearest horizontal and vertical
grid lines. With the CustomPanel open, enter PanelBuilder Edit Mode. When adding a new component
to the canvas, or resizing an existing component, it will auto-fill to encompass the closest grid space. To
enable Snap to Grid, right-click on the blank canvas and select Snap to grid.

Publish for web

Lock all proportions

Snap to grid

The default grid size is set to 20. You can adjust the size of the grid in the source code to make the grid
larger or smaller, as shown below:

You can see an example below using the gridsize tag.

Syntax
<abs contexttype="opengear" id=" top" gridsize="10" style="">

</abs>

keepalive

When DashBoard runs low on memory, it may unload panels that are not active, in order to free up
memory. If you have a panel that runs tasks in the background (listeners, gpi triggers, timers, etc), you
may not want DashBoard to unload your panel. You can use the keepalive flag in the top-level
container>, to indicate that this panel should not be unloaded. For more details, see the Memory
Manager feature in the Dashboard User Guide.

Note: Panels without this flag cannot be unloaded.

Tip: From the PanelBuilder Component Editor, in the Abs Attributes tab, you can select the Keep
Alive checkbox to ensure panel is not unloaded.

Keep Alive (Prevents CustomPanel from being unloaded when memory is low)
Syntax
<abs contexttype="opengear" id=" top" keepalive="true" style="">
</abs>

118 e ogScript Reference DashBoard CustomPanel Development Guide

Widget Tags

Widget tags are components that can be added to an OGLML page. In contrast with the Container tags
described previously, widget tags do not contain other components.

The following tags are provided:

Tag Description
reveal Brings hidden tab pages to the front
drawer Creates a container that allows you to add drawer tabs to maximize panel
space, by organizing additional content in hidden drawer tab
ext Opens the editor for a specified node in the DashBoard Tree
exit Creates an exit button that, when clicked, causes DashBoard to close the
current panel, window, or application
help Creates a help pop-up button which can display a custom help title and
message when selected
image Displays a static image
label Creates a static text label
utton Creates a button
browser Creates a web browser window
blank Placeholder, used to leave a blank cell in simplegrid, table and flow
containers
lock Allows DashBoard client screen to be locked
memory The memory manager widget allows you to add a memory status
indicator bar to monitor the current memory usage of the DashBoard
application
widget Creates an instance of a custom widget
wizard You can create a basic wizard, that is also customizable using script
webcam Displays a webcam video feed
NDI Displays an NDI video feed with audio.
drawer

If space is limited on your custom panel, you can now create drawers to make additional space for
content. This is ideal for smaller panels with restricted space, such as the Ultritouch custom panel, or
any panel that is crowded with too many components. It can help to organize your content,
compartmentalize standalone functions, or to minimize certain parts of the custom panel when it is not
in use.

You can see an example of an Ultritouch Panel with drawers below:
X UltritouchDrawer.grid X

Bt e Sett
451} Audio Conrots w Advanced Settings

= Menu

= JNEWS VAN

@ ®" REPORTING LIVE

It is recommended that you create the drawer using the Tab Split & Drawer button that can be found in
Panel Builder Edit Mode toolbar.

For more information, see the DashBoard User Guide > Panel Builder > Adding basic Components >
Drawers.

DashBoard CustomPanel Development Guide ogScript Reference o 119

Syntax

<drawer name="drawer-name", targetid="elementl,element2,...">
<abs> name= <abs>
<drawer height="380" left="163" tabfill="both" top="141" width="538">

<abs anchor="drawer-tab-name" height="48" id="northl" name="northl"
width="249"/>

</drawer>
<drawer height="380" left="163" tabfill="none" top="141" width="538">
<abs anchor="east" height="48" id="northl" name="northl" width="249"/>

</drawer>

wizard

You can create wizards that contain a title, a page navigation pane, and a progress bar. The wizard
allows you to automate complex tasks and break them into a series of steps that walk users through the
process from start to finish.

In addition to determining which features you would like to be visible, you can also choose how many
pages appear in the wizard. Pages are shown as Page 1, Page 2, and so on. It's easy to change the default
page name to be more descriptive, since the navigation pane already provides automatic numbering on
each tab. For example, "Page 1" could be renamed "Device Options" and that tab will display "1. Device
Options" in the navigation pane, as shown below.

My Help Wizard *

+

Continue

reveal

Creates a button that, when clicked, causes elements within tab pages to become visible in the UL
When the button is pressed, DashBoard finds all components with the provided target ID(s) and checks
to see if they are contained within a tab component or menugroup. If component is found, its tab page
is brought to the foreground (made the active tab). If the specified component is buried deep within the
UI (e.g. a tab within a tab), the device must supply multiple IDs to ‘reveal’ the desired component and
the component’s parents.

Syntax

<reveal name="button-name" targetid="elementl,element2,...">

</reveal>

120 « ogScript Reference DashBoard CustomPanel Development Guide

Attributes

In addition to General Attributes, the following attributes may be specified to the <reveal> tag:

Attribute Values Restrictions Description

name String The name to display on the button.

targetid list of Strings Each string in the = Specifies the element ids to show.
separated by value must refer
commas or to the id of
semicolons. another

component.
Examples

The following example creates a button that reveals the menu with id “Key1Panel”

<reveal name="Key 1" targetid="KeylPanel"/>

The following example creates a button that reveals the menu “Key1Panel” and the tab
“KeylChromaTab”.

<reveal name="Chroma Key 1" targetid="KeylPanel,KeylChromaTab"/>

ext
Creates a button that, when clicked, causes DashBoard to open an editor tab for a device in the
DashBoard tree view. When the button is pressed, DashBoard searches its tree view for a node with the
provided ID. Ifanode is found and the node contains an editor, its editor is opened and/or brought to
the foreground (made the active tab).
If a component is buried deep within the UI (e.g. a tab within a tab), the card can supply multiple IDs to
‘reveal’ not only the desired component, but also the component’s parents.
Syntax
<ext name="button-name" objectid="node-id" buttontype="type" general
attributes/>
<ext name="button-name" objectid="FileNavigator, file-path, file-name"
buttontype="type" general attributes/>
Attributes
In addition to General Attributes, the following attributes may be specified to the <ext> tag:
Attribute Values Restrictions Description
name String The name to display on the button.
objectid String The value must Specifies the id of the components to

refer to the node show.
ID an elementin DashBoard provides a few shortcuts to
DashBoard's tree reference elements under the device
view. node in the tree or a sibling device in the
same frame:
Y%frame% will be replaced with the
frame’s primary identifier.
%device% will be replaced with the
device’s primary identifier.
Yslot 1 (or 2, or 3, etc.)% will be
replaced with the primary identifier of the
device in the referenced slot in the same
frame.
If the String starts with
“FileNavigator,” the objectid
specifies a path and filename of a
resource in the DashBoard file navigator,

DashBoard CustomPanel Development Guide ogScript Reference o 121

Attribute Values Restrictions Description
rather than the tree view.

buttontype button Optional “button” = display the link as a button
label “label” = display the link as a label

Default values shown in bold.

exit
Creates an exit button that, when clicked, causes DashBoard to close the current panel, window, or
application. If a message prompt is defined, then a Yes or No message prompt pop-up will appear when
the button is pressed. An example of an exit button with a prompt set would be: prompt="“Do you wish
to exit this panel?”.
If you set the exit button to close a panel when pressed, additional options are available to set
DashBoard to jump to another device user interface from the tree view, or Custom Panel file. When the
button is pressed, DashBoard searches its tree view for a node with the provided ID. If a node is found
and the node contains an editor, its editor is opened and/or brought to the foreground (made the active
tab).
Syntax
<exit name="button-name" level= "panel|window|application" openobjectid=
"node-id" prompt="Exit-prompt-message" general attributes/>
<exit name="button-name" level= "panel" openobjectid="FileNavigator, file-
path, file-name" buttontype="type" prompt="Exit-prompt-message" general
attributes/>
Attributes
In addition to General Attributes, the following attributes may be specified to the <ext> tag:
Attribute Values Restrictions Description
name String The name to display on the button.
level String The level can be set to one of the
following: panel, window or
application. Where:
e panel closes the current panel.
e window closes the current
window.
e Application closes the
DashBoard application.
Note: Setting 1evel to window can also
result in exiting the DashBoard
application if only one window is open
when the button is pressed.
objectid String The value must Specifies the id of the components to

refer to the node show.
ID an elementin DashBoard provides a few shortcuts to
DashBoard’s tree reference elements under the device
view. node in the tree or a sibling device in the
same frame:
Y%frame% will be replaced with the
frame’s primary identifier.
%device% will be replaced with the
device’s primary identifier.
Yslot 1 (or 2, or 3, etc.)% will be
replaced with the primary identifier of the
device in the referenced slot in the same

122 « ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
frame.
If the String starts with
“FileNavigator,” the objectid
specifies a path and filename of a
resource in the DashBoard file navigator,
rather than the tree view.

prompt If you want a message prompt to appear
to confirm whether to exit the panel,
application or window, add the following:
prompt=“your-message-text”
When defined, the message you have
entered appears in a Yes or No pop-up

dialog.
buttontype button Optional “button” = display as a button
label “label” = display as a clickable label

Default values shown in bold.

help

Creates a help pop-up button which can display a custom help title and message when selected.

Syntax
<help control attributes>
<![CDATA[<html>Html text</html>]]>
</help>
Control Attributes

In addition to General Attributes, the following attributes may be specified to the <help> tag:

Attribute Values Restrictions Description

popupwidth Integer Specifies the width of the popup content,
in pixels.

popupheight Integer Specifies the height of the popup
content, in pixels. This does not include
the title.

Title String The title to display in the popup.

Message String Can be plain text The message to display in the popup.

or html.

Default values shown in bold.

Examples

The example code below creates a 40 by 40 pixel help pop-up, as shown in Figure 70.
<help height="40" left="25" top="25" width="40" popupheight="200"
popupwidth="500" style="bg#££0000;" title="Example Help">

<! [CDATA[<html><left><u>Html formatted heading</u>
<font

color=#ffffdd>Take me Home
Ross Video

The latest software release for Carbonite Black Solo unlocks a powerful USB
Media Player functionality and is available to customers at no additional
cost. This new media player provides the functionality of a single-channel
clip player, for playout of compressed MPEG-4 AVC media directly from a
connected USB-media drive. There is no other production switcher in the world

DashBoard CustomPanel Development Guide ogScript Reference e 123

https://www.rossvideo.com/

with this level of built-in media playback.

</html>]]1>
</help>
Example Help
with this
Figure 73 — Example Help Dialog
image

Fetch an image from the provided URL and display it.

Syntax

<image src="URL-String" attributes> </image>

Attributes
Attribute Values Restrictions Description
src URL String Required. Must Set the background image of the
be a fully component.
qualified URL.
height Integers It top and bottom are both specified, or
top height is specified, the image will be
bottomn stretched to the height specified.
Otherwise, the image’s native height is
used.
width Integers It left and right are both specified, or
left width is specified, the image will be
right stretched to the width specified.
Otherwise, the image’s native width is
used.
Examples

The following example places an image at its native size:
<image src="http://whatever.com/logo.jpg" top="50" left="50"/>
The following example places an image and scales it to 200x100 pixels in size.

<image src="http://whatever.com/logo.jpg" top="50" left="50" height="100"
width="200"/>

label

Display a label. If the name is not defined, the text content of the label is used to provide the content.
One or more ogScript tasks can be attached to a label to be fired when the label is clicked.

124 « ogScript Reference DashBoard CustomPanel Development Guide

Syntax

<label name="label-name" attributes> </label>

Attributes
Tag Values Restrictions Description

name String The text to display in the label.

align left The horizontal alignment of the text
right within the label.
center

header true Format the label as a header element
false (apply a standard header background,

foreground, and border).
html true The text is actually a snippet of HTML

false (you do not need to provide the
<htmI></htmI> tags).

Default values shown in bold.

Examples

<label name="This is a label" />
<label html="true" name="This is an <i>HTML</i> label"/>
<label header="true" name="Label with the header attribute" />

5 a label
5 an HTML label

This is a label with the header attribute

Figure 74 — Label Examples

button

Display a button. One or more ogScript tasks can be attached to a button to be fired when the button is
pressed or toggled.

Syntax

<button name="label-name" attributes> </button>

Attributes
Attribute Values Restrictions Description

name String Required The text to display in the label.

buttontype push The type of button to create. Push
toggle buttons are stateless. Toggle, checkbox,
checkbox and radio are all 2-state - “on” and “off”.
radio

toggled true The initial state of the button.
false

flat true Only applicable to Request a ‘flat’ look for the button (or
false push or toggle toggle button) in the Ul. Note that icons

buttontype styles may not be applied to flat buttons.

Default values shown in bold.

DashBoard CustomPanel Development Guide ogScript Reference e 125

Examples

This example displays a series of simple pushbuttons as illustrated in Figure 75:

<button buttontype="push" name="push" top="25" width="80"/>

<button buttontype="toggle" name="toggle" toggled="true" top="25"
width="80"/>

<button buttontype="push" flat="true" left="400" name="flat" top="25"
width="80"/>

<button buttontype="radio" 1left="500" name="radio" top="25"/>
<button buttontype="checkbox" left="600" name="checkbox" top="25"/>

&) radio «f checkbox

Figure 75 — Button Examples

browser
Embed a web browser component in the page and point it at the specified URL.
Note The browser plug-in is a heavy widget, and should therefore be used sparingly.
Syntax

<browser fallback="true” type="String” url="URL-String" height="height"
width="width" attributes >

</browser>
Attributes
Attribute Values Restrictions Description
url URL String Required. Must The URL to use for the provided
be a fully browser.
qualified URL.
width Positive integer Required The width (in pixels) of the browser.
height Positive integer Required The height (in pixels) of the browser.
type String Optional Specifies the browser engine being
used.
The default selection is “default”.
fallback true Optional When enabled, the fallback browser type
false will be used if the selected browser type
is unsupported.
The default selection is “true”.
Notes

The browser type options provided are the following:

e Default

e Chromium

e System

e JavaFX
Note that if supported, the default browser type Chromium will be used.
The system browser will depend on the OS.

126 e ogScript Reference DashBoard CustomPanel Development Guide

e On Windows it will generally be Internet Explorer.
e On Linux it will be XUL Runner.
e On Mac it will be Mozilla.
The web sites pointed to by the browser must NOT contain Java Applets.

Not all plug-ins will be available on all browsers. It is recommended that developers test their web
pages inside of DashBoard on multiple platforms.

The browser is a heavyweight component and must not be used inside of a scrolling component.

The browser will cause rendering issues if it is clipped by other components.

Example

<browser fallback="true" height="360" left="1240" top="500" type="javafx"
url="https://google.ca"™ width="360"/>

blank

Creates a blank placeholder component. This can be used to fill space where necessary.

Syntax
<blank attributes />

Attributes
See General Attributes.

Example

<table left="25" top="25" width="400">
<tr>
<label name="This" width="100"/>
<label name="is" width="100"/>
<label name="a" width="100"/>
<label name="table" width="100"/>
</tr>
<tr>
<label name="with" width="100"/>
<pblank/>
<label name="blank" width="100"/>
<label name="tags" width="100"/>
</tr>
</table>

Figure 76 — Blank Tag Example

lock

Creates a button that, when pressed, will turn on DashBoard’s screen lock. The lock button will display
a lock icon by default but this icon can be overridden by a card developer.

Syntax

<lock name="button-name" attributes />

DashBoard CustomPanel Development Guide ogScript Reference o 127

Attributes

See General Attributes.

Attributes Values Restrictions Description

name String Text to display on the button. Text will be
rendered beside the lock icon.

Example

<lock name="Lock Screen" left="25" top="25"/>

Figure 77 — Lock Button

When locked, the DashBoard UI will be darkened, with an unlock widget.

Spin to unlock

Figure 78 — Lock Screen Widget

memory

The memory manager widget allows you to add a memory status indicator bar to monitor the current
memory usage of the DashBoard application. This performs the same function as the memory manager
indicator that is available in the top right DashBoard toolbar. The memory manager widget allows you
to continue to monitor the memory usage of the status indicator while a panel is in full screen mode.
You can add a memory manager widget directly to your panel and customize its size and position. By
default the <memory/> tag is 60 pixels in width by 20 pixels in height, and it is located in the top left
corner.

Syntax

<abs contexttype="opengear" id=" top" keepalive="false" style="">
<memory height="50" left="1500" top="50" width="200"/>
</abs>

A memory manager widget appears in the specified area.

Figure 79 — Lock Screen Widget

Attributes Values Restrictions Description
id String Widget identifier.
height String Height of the memory manager widget.

128 e ogScript Reference DashBoard CustomPanel Development Guide

Attributes Values Restrictions Description
width String Width of the memory manager widget.

left String Offsets the memory manager widget a
select number of pixels from the left side
margins of the panel.

right String Offsets the memory manager widget a
select number of pixels from the right
side margins of the panel.

top String Offsets the memory manager widget a
select number of pixels from the top
margins of the panel.

bottom String Offsets the memory manager widget a
select number of pixels from the bottom
margins of the panel.

widget

Creates an instance of a custom widget. The widget must be defined through a widgetdescriptor
tag. Parameters declared within the widgetdescriptor’s config block may be overridden through
param tags within a config block.

Syntax
<widget widgetid="widget-id" baseOID="base-oid">
<config>
<params>
<param/>
<param/>

<params/>
</config>
</widget>
Attributes

In addition to General Attributes, the following attributes may be specified to the <widget> tag:

Attributes Values Restrictions Description

widgetid String Must match the Widget identifier.
id of a declared
widgetdescriptor.

baseOID String Specifies the base OID string for relative
parameter access. Relative parameter
access within the widget will be prefixed
with the value of the baseOID attribute
string.

DashBoard CustomPanel Development Guide ogScript Reference o 129

See Also

e widgetdescriptor

e config

e param

Examples
The following example displays a custom widget with id alarmgrid:

<widget widgetid="alarmgrid" top="100" left="100"/>

The following example displays a custom widget with id alarmgrid, overriding the value of
parameter str2 with the value “New String Value™:
<widget left="100" top="300" widgetid="alarmgrid">
<config>
<params>
<param oid="str2" value="New String Value"/>
</params>
</config>
</widget>

130 e ogScript Reference DashBoard CustomPanel Development Guide

webcam
Embed a webcam video feed in the page.

Syntax

<webcam fillmode="String" height="height" mirror="false" resolution="String"
sourceName="String" width="width"/>

Attributes
Attributes Values Restrictions Description
fillmode None Specifies how the webcam video feed is
Fill displayed within the widget.
Fit
height String Height of the webcam video feed widget.
width String Width of the webcam video feed widget.
mirror true When enabled, mirrors the webcam
false video feed within the display.
resolution String The specified resolution for the webcam
video feed displayed.
sourcename String Name of the source for the webcam
video feed.
Example

The following example places an image at its native size:

<webcam fillmode="FIT" height="295" mirror="false" resolution="176x-144"
sourceName="Integrated Webcam" width="443"/>

NDI

Embed an NDI video feed with audio in the CustomPanel.

Syntax

<ndi srcname="String” src="String” canvas="boolean" fill="String"
normalization="20,20" quality="String" showimagesize="boolean"
showname="boolean" showsrc="boolean" showtimecode="boolean"
tallystate="String" window="10,10,20,20"/>

Attributes
Attributes Values Restrictions Description
sourcename String Only sources Name of the source for the NDI feed.
detected by the
application
should be used.
src String Optional: Use the IP or URL instead of
using a detected NDI source name.
canvas true Adds enhancements to the NDI video
false and NDI audio.
fill fit Specifies how the NDI video feed is
crop displayed within the widget.
both

DashBoard CustomPanel Development Guide ogScript Reference o 131

Attributes Values Restrictions Description

normalization String Sets the normalization for the NDI feed.

quality low Specifies the quality of the NDI video
high feed.

showlmageSize true Displays the image size in the widget.
false

showName true Displays the source name in the widget.
false

showsrc true Displays the source URL or IP in the
false Wldget

showTimeCode true Displays the time code size in the
false Wldget

tallystate off Specifies the on-air status of the NDI
preview video feed.
program
both

window String Displays the NDI feed in a sub window of

the widget.

Non-Ul Tags

The following tags do not provide any Ul elements themselves. They contribute new parameters, script
snippets, constraints, etc. for use elsewhere in the OGLML document.

The following tags are provided.

Tag Description
api Provides a location for global ogScript code.

context (device context) A device context is a data structure that contains information about the
attributes of a device data source.

meta This is a convenient parent tag for all non-Ul tags.
subscription This tag indicates the list of subscription oids that the panel wishes to

receive parameter updates from the OGP JSON device.
Note: The device source must support subscriptions protocol.

widgets This is a container for user-defined widget descriptors.
widgetdesriptor Defines a custom widget.
lookup A lookup defines constants to be substituted inside of other tag attributes

or used in ogScript blocks.

style To provide something similar to Cascading Style Sheets (CSS) available
in HTML, styles can be defined in a tag and referenced in the style
attribute of widget tags.

color Defines or overrides a color constant for use within style hints.

ogscript Defines an ogScript code snippet to handle an event on a Ul element or
parameter.

constraint Defines the constraint of a parameter.

params The parent container for parameters defined within the OGLML
document.

132 e ogScript Reference DashBoard CustomPanel Development Guide

Tag Description

timer The timer tag fires events at regular intervals.

listener The listener tag allows an OGLML page to process network
communications using protocols not already available.

task Defines a block of ogScript to be run when an event happens in the
system.

timertask Defines a block of ogScript to be run when a timer goes off.

include This tag allows an OGLML document to be assembled from several

individual XML files or fragments.

Provides a location for global ogScript code. Contents of the <api> tag are processed by the ogScript
compiler directly. Elements within an api tag are scoped where they are declared in the XML; siblings
and children of siblings have visibility to elements declared within the api tag.

You can use the <api> tag to create a library of reusable ogScript code segments. For more information
and best practices, see Custom APIs Within CustomPanels.

The api tag should generally be placed within a <meta> tag for global ogScript code encapsulation.
However, ogScript code intended to dynamically generate and modify the XML should be placed in a
top-level api tag.
Syntax
<api>

global-scope elements
</api>

Attributes

None.

context (device context)

A device context is a data structure that contains information about the attributes of a device. It provides
a means to organize the OGLML document structure of the DashBoard CustomPanel. Typically this tag
is used if a CustomPanel (also called a device panel elsewhere) is used to add more than one data source
to the panel.

Basic Syntax

<context contexttype="opengear" objectid="Daves Ultritouch...">

</context>

Syntax for Panels that Support Subscriptions
<context contexttype="opengear" objectid="DevicelID..." subscriptions="true">
<meta>
<subscription oids="oidl, o0id2, oid3*"/>
</meta>

</context>

DashBoard CustomPanel Development Guide ogScript Reference e 133

Example of a Subscriptions Panel with Two Device Contexts

<abs contexttype="opengear" id=" top" keepalive="false" objectid="MyUltritouch..."
objecttype="Ultritouch Device">

<context contexttype="opengear" objectid="Kyles Ultritouch..." subscriptions="true">
<meta>
<subscription oids="db.touch*,deviceoptions.speakervolume"/>
</meta>
</context>

<context contexttype="opengear" objectid="Daves Ultritouch..."
subscriptions="true">

<meta>
<subscription oids ="devices*, deviceoptions.lcdbrightness"/>
</meta>
</context>

</abs>

In this example, you can see two separate device contexts, which point to two different Ross Ultritouch
devices that support subscriptions protocol. The topmost container for the panel, in this case an <abs/>
does not need to be modified to add device contexts.

Attributes
Attribute Values Restrictions Description
contexttype string Typically set to opengear for openGear
or DashBoard Connect devices.
objectid string Object ID provided by DashBoard.
subscriptions String set to *This attribute This flag is required to indicate support
"true" or "false". Must be set to for subscriptions devices that are used
"true" to support as a data source in this panel.
OGP devices that
support the Note: The panel must also provide a list
subscription of subscription OIDs to determine
protocol. which device parameters the panel will
always receive updates for.
subscription

This tag indicates the list of subscription oids that the panel wishes to receive parameter updates from
the OGP JSON device.

Note: The device source must support subscriptions protocol. This tag only works when used in
conjunction with the subscriptions="true" attribute.

Syntax
<Zontext contexttype="opengear" objectid="DeviceID..." subscriptions="true">
<meta>
<subscription oids="oidl, o0id2, oid3*" />
</meta>

</context>

Attributes

134 o ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description

oids String of *Required to The list of OID parameters for the
comma support OGP openGear device source must be listed
separated OIDs devices that here, otherwise the panel will only get
support the updates for the minimal set of OIDs.
subscription
protocol. Note: This tag can only be added to a

CustomPanel that indicates support for
subscriptions="true" in the
context or top level attributes of the
panel. It is recommended to nest the

subscription oid list within a meta tag.

See the details below for more
information wildcards.

Note: You can use wildcard asterisks to include multiple OIDs simultaneously that have the same
starting prefix in the name. The wildcard should be added after this prefix. These wildcards are useful
when you don't want to type out a whole list of similar OIDs manually. Instead you can add a subset of
OIDs by including a wildcard. If wildcards are used, your list of subscriptions are optimized by
DashBoard to use the wildcard that includes the most items.

About Using Wildcards

Adding a wildcard asterisk to a list of parameter OIDs in a DashBoard device panel, will allow you to
quickly add multiple sets of parameter OIDs that start with the same prefix. You can only add an
asterisk to the end of an oid prefix name. The asterisk means that you will subscribe to all parameters
that start with the prefix you entered.

For example, if you wanted to add three OIDs, types.audiomixer, types.audiomixerpartition and
types.audiosound, you could use the following wildcards: ty*, types.audio*, or types.au*. If you use
more than one wildcard that applies to the same parameters, DashBoard will choose the most efficient
wildcard to optimize. In the example above, ty* would be used. You cannot add a wildcard before the
prefix or have text after the wildcard. For example, *ypes. and ty*p are not valid.

For related content, see: context (device context), subscriptions, meta

meta

This is a convenient parent tag for all non-UI tags. The meta tag does not deepen the scope, therefore
children of the meta are considered at the same scope as the meta tag itself, and therefore siblings of
other top-level tags.

Syntax

<meta>
non-ui-tags

</meta>

Attributes

None.

widgets

This is a container for user-defined widget descriptors.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference e 135

<widgets>
<widgetdescriptor/>
<widgetdescriptor/>

</widgets>

Attributes

None.

widgetdescriptor

Defines a custom widget. The widget descriptor contains two blocks denoted by <config> and
<oglml> tags. The config section includes content to render the widget’s configuration page within
PanelBuilder’s Edit Component dialog. The oglml block contains the content to create the widget
itself.

The widgetdescriptor tag may be contained within a widgets block of an oglml document, in an
external file or be served up via URL

Syntax
<widgetdescriptor id="widget-id" baseurl="URL-string"
structtype="structtype">
<config/>
<oglml/>
</widgetdescriptor>

136 e ogScript Reference DashBoard CustomPanel Development Guide

Attributes

Attributes Values Restrictions Description
id String Must be unique Widget identifier.
structtype String Specifies a dependency of the widget

upon a global struct parameter with
matching structtype. Currently this type
checking is restricted only to
PanelBuilder Ul; a custom widget will
only be available in PanelBuilder if a
parameter exists with matching

structtype.
baseurl String Must be a valid, When specified, the widget descriptor
fully qualified will be fetched from a document
URL. specified by the URL, rather than inline.
See Also
widget
config
param
Examples

The following creates a custom widget which displays four alarm dots in a 2x2 grid. The strings that sit
beside each dot are configurable parameters of the widget.
<widgetdescriptor id="alarmgrid">
<config>
<params>
<param access="1" type="STRING" oid="strl" name="String 1"/>
<param access="1" type="STRING" oid="str2" name="String 2"/>
<param access="1" type="STRING" oid="str3" name="String 3"/>
<param access="1" type="STRING" oid="str4" name="String 4"/>
</params>
</config>
<oglml>
<simplegrid cols="2" rows="2">
<param oid="strl" widget="12" width="200" height="40"/>
<param oid="str2" widget="12" width="200" height="40"/>
<param oid="str3" widget="12" width="200" height="40"/>
<param oid="str4d" widget="12" width="200" height="40"/>
</simplegrid>
</oglml>
</widgetdescriptor>

The following retrieves a widget descriptor from a web server:

<widgetdescriptor baseurl="http://mydevice/files/widgets.widgetdescriptor"/>

The widget is then displayed with the following:
<widget widgetid="alarmgrid" top="100" left="100"/>

DashBoard CustomPanel Development Guide ogScript Reference o 137

The following example displays the widget, overriding the value of parameter str2 with the value
“New String Value™:
<widget left="100" top="300" widgetid="alarmgrid">
<config>
<params>
<param oid="str2" value="New String Value"/>
</params>
</config>
</widget>

lookup

A lookup defines constants to be substituted inside of other tag attributes or used in ogScript blocks.
Lookups contain “entry” tags to define key/value pairs. Constants defined in a parent context can be
referenced in a child context. If a key from the parent context is re-defined in a child context, the re-
defined value will take precedence in the child’s scope.

Global 1ocokup tags should usually be placed within an api tag.

Syntax

<lookup id="id-string" scope="scope">
<entry key="key">value</entry>
<entry key="key">value</entry>

</lookup>

Attributes
Attribute Values Restrictions Description
scope private If “private”, the By default, all key/value pairs are added
public lookup must to a general lookup table. The lookup
window define the id table in any context is the concatenation
attribute. of all parent lookup tables and sibling
lookup tables.
If the scope is set to “private”, the
keyl/value pairs can only be referenced
using the lookup table’s ID.
id string If defined, key/value pairs for this lookup
can be referenced in ogScript using
“ogscript.getPrivateString(‘[id], ‘[key]);”
Or substitute inside of other attributes
with %const['id']['key’1%
code true Must be set true if the lookup value
false contains executable script.
multiline true Must be set true if lookup value contains
false multi-line strings.

Default values shown in bold.

138 e ogScript Reference DashBoard CustomPanel Development Guide

Example

The following tag creates a public lookup

<lookup>
<entry key="breakfast">Bacon and Eggs</entry>
<entry key="lunch">BLT</entry>
<entry key="dinner">Bacon explosion</entry>
<entry key="snack'">Bacon-maple donut</entry>
</lookup>

The following code returns the string BLT.

var currentMeal = ogscript.getString('lunch');

The following tag creates a private scope lookup
<lookup id="family" scope="private">
<entry key="father">Homer Simpson</entry>
<entry key="son">Bart Simpson</entry>
<entry key="mother'">Marge Bouvier-Simpson</entry>
<entry key="daughter">Lisa</entry>
<entry key="baby">Magaggie</entry>
</lookup>

The following code would return the string Homer Simpson.
var name = ogscript.getPrivateString('family', 'father');

The following tag creates a block of code lookup:

<lookup code="true" id="GlobalScripts" multiline="true">
<entry key="UpdateTimer">
if (params.getValue ('Update Automatically', 0) == 1)
{

ogscript.getTimerManager () .getTimer ('UpdateTimer') .startTimer (false) ;
}
else
{
ogscript.getTimerManager () .getTimer ('UpdateTimer') .stopTimer (false) ;
}
</entry>
</lookup>

The following is an example of instancing the code defined in the above lookup:

<ogscript handles="onload">%const['GlobalScripts'] ['UpdateTimer']%</ogscript>

DashBoard CustomPanel Development Guide ogScript Reference e 139

style

To provide something similar to Cascading Style Sheets (CSS) available in HTML, styles can be
defined in a tag and referenced in the style attribute of widget tags.

Syntax

<style id="style-name" value="value-string"/>

Attributes
Attribute Values Restrictions Description
id string Must not contain The ID to use when referencing the
a semicolon style.
value string Must not contain Value contains a style hint string
any circular following the same format used in the
references to style attribute of other tags.
itself.
Examples

The following example applies button style hints as defined in the predefined style
CommandButtonStyle. Note that the “Stop” button has an additional hint applied (size:big), and
overrides the background color (bg#££0000).

<style id="ButtonStyle" value="bg#808000;bdr:etched;"/>

<button name="Start" style="style:ButtonStyle;"/>

<button name="Stop" style="style:ButtonStyle;size:big;bg#f£f0000;"/>

<button name="Reset" style="style:ButtonStyle;"/>

Start St op Reset

Figure 80 - Style Tag Example

color

Defines or overrides a color constant for use within style hints.

Syntax

<color id="color-name" value="color-value"/>

Attributes
Attribute Values Restrictions Description
id string The ID to use when referencing the
color.
value #RRGGBB Value contains a style hint string
or following the same format used in the
#color-constant color style attribute.
or
#RRGGBBAA
Example

The following example defines a color constant ColorBlue and applies it to the background of a button
widget.

140 e ogScript Reference DashBoard CustomPanel Development Guide

<color id="VibrantBlue" value="#0000FF"/>
<button name="Blue Button" style="bg#VibrantBlue"/>

ogscript

Defines an ogScript code snippet to handle an event on a Ul element or parameter.

Syntax

<ogscript handles="eventType">
ogScript code
</ogscript>

Attributes

Attribute Values Restrictions Description
use online Script will only run on a real device

offline Script will only run on a file-based device
both Script will run always

targetid string The ID of the Ul element to target.

handles Multiple “handles’
arguments can
be supplied,
separated by
commas.

The type of event that triggers the script.

attributechange Can be used to trigger scripts when
selected NK device is changed or
monitor status of FTP download/upload:

<ogscript
attribute="com.rossvideo.ftp.event"
handles="attributechange">var
progressEvent = event.getNewValue();

if (progressEvent == null)
{
ogscript.debug('No progress');
}
else

{

ogscript.rename('label.bytes’,
(progressEvent.getTotalBytesTransferre
d() / 1024) + 'kb'");
}<logscript>

dragvalue Must specify something to return
(generally a string or a number) when
the element is dragged.

onaction Triggered when a button is pressed.

onchange Only supported Triggers script when parameter or tab is
by tabs and changed.
parameters.

onclick Triggers script when element is clicked.

onclose Triggered when the panel has been
closed (can be used for cleaning-up).

DashBoard CustomPanel Development Guide ogScript Reference o 141

Attribute Values Restrictions Description

oncontextmenu Triggers script when the element is right-
clicked, or tapped and held.
To create a context menu, define an
array of menu options, each associated
with a segment of ogScript.
For more information, see Example of a
Context menu on page 143.

ondrag Triggers script when the element is
dragged
ondrop Triggers script when another component

is dropped on the component.

onkeypress Triggers script when the component has
focus and a keyboard key is pressed.

onkeyrelease Triggers script when the component has
focus and a keyboard key is released.

onlassoout Triggers script when a lassostart
operation has started and the
component with the selected ID is no
longer inside of its bounding rectangle.

onlassoover Triggers script when a lassostart
operation has started and the
component with the selected ID is inside
of its bounding rectangle.

onlassostart Triggers script when the user clicks and
starts to drag a ‘lasso’ rectangle.

onlassostop Triggers script when a lasso rectangle
that is being dragged stops (see the
Ultrix Ul with the physical view of the
frame for an example).

onload Triggered when the panel has finished
loading or is reloaded

onmousedown Triggers script at onmouse click down
event.

onmouseenter Triggers script when the pointer moves
over the component.

onmouseexit Triggers script when the pointer leaves
the component.

onmouseup Triggers script on mouse click up event.

onmousemove Triggers script when mouse moves over
component

onmouseup Triggers script when the mouse is

released after having been pressed
while pointing to the component.

onresize Triggers script when the component is
resized.
oid Positive integer Must be a defined The OID of the parameter to target.
OID.

For more information, see Example of
Only applies to Wildcards with OID Attributes in ogscript
“onchange” tag.

142 o ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions
element List of array All array
indices elements
separated by referenced must
commas exist in the
parameter value.
Only applies to
“onchange”
script ogScript Can also be the

text content of the
<ogscript> tag.

Note: Default values are shown in bold.

Example of a Context Menu

Description

By default, all elements of an array
parameter are targeted. This attribute
can be used to return a subset of the
array. If a list is provided, only the
elements at the provided indices are
returned (note- you can specify the
elements in any order).

This value must be “0” for a non-array
parameter.

The script to run when triggered by any
of the events listed in “handles”.

In this example, an <ogscript> tag uses the oncontextmenu event handler to present a menu of
options to the user. The menu also includes submenu options. The target is a label with

id="myMenuLabel".

When the user right-clicks or taps and holds the label, the menu options appear. When the user clicks or
taps a menu option, the function associated with that option is called. In this example, the functions

output messages to the openGear debug console.

The following figure shows the context menu fully expanded, and the messages that appear in the
openGear debug console when the user selects each menu option.

T “contextMenuExample.grid

Label with Menu Options

Sub Menu Option 1

Menu Option 2

~ ® 5 openGear Debug Information x
|nitialized: 0
Failed: 0
Average Init Time: -1.0 (ms)
Average Response Delay: -1.0 (ms)
Average Packet Time: -1.0 (ms)
Total Packets: 0
[[] Draw OGLML Outlines
[[] OGP/OGLML Strict Mode
Parameter Inspector
Exceptions/Messages:
Print All v

14:39:42:993: First Option was selected
14:39:45:729: Second Option was selected
14:39:53:523: Sub Menu Option 1 was selected

14:40:33:041: Sub Menu Option 2 was selected

Reset

DashBoard CustomPanel Development Guide

ogScript Reference e 143

The following code produces the context menu shown above:

<abs contexttype="opengear" style="fg#foreground;">

<meta>
<ogscript handles="oncontextmenu" targetid="myMenuLabel">var
myContextMenu = {};
myContextMenu["First Option"] = function()

{

ogscript.debug ("First Option was selected");

}i

myContextMenu["Second Option"] = function()

{

ogscript.debug("Second Option was selected");
bi

myContextMenu["Sub Menu Stem"] = {};
myContextMenu["Sub Menu Stem"] ["Sub Menu Option 1"] = function()
{
ogscript.debug ("Sub Menu Option 1 was selected");
}i

myContextMenu["Sub Menu Stem"] ["Sub Menu Option 2"] = function()

{
ogscript.debug ("Sub Menu Option 2 was selected");

}i

return myContextMenu;</ogscript>

</meta>
<label height="60" id="myMenuLabel" left="21" name="Label with Menu
Options (right-click):" style="txt-

align:center;bdr:line;bdr#selectbg;bg#listbg; fg#foreground;" top="25"
width="275"/>

</abs>

Example of Wildcards with OID Attributes in ogscript Tag

From DashBoard version 9.15 onwards, the oid attribute in ogscript supports wildcards only for the
params onchange event, enabling tasks to be triggered on multiple parameters which share an OID
pattern. For struct parameters, the wildcard should be placed after the dot. This helps identify whether
OIDs are indexed or not. For non-indexed OIDs, the wildcard just goes in the middle.

Some examples of using wildcards with OID attributes in ogscript tag are:
<ogscript handles="onchange" oid="colors.*">var oid =

this.getOid () .toString();ogscript.debug (oid) ;</ogscript>

<ogscript handles="onchange" oid="*.r">var oid =
this.getOid () .toString () ;ogscript.debug (oid) ;</ogscript>

<ogscript handles="onchange" oid="users.*.pets.*">var oid =
this.getOid () .toString () ;ogscript.debug (oid) ;</ogscript>

144 « ogScript Reference DashBoard CustomPanel Development Guide

constraint

Defines the constraint of a parameter. The structure of this object depends upon the constrainttype of
the parameter. Range constraints are specified as an attribute of a param tag; Choice, Alarm Table, and
Struct constraints are specified using constraint tags as children to the param object.

Constraints may be defined within a param declaration, or defined globally and referenced by specific
parameters.

Syntax

Constraints with inline constraint values:

<constraint constrainttype="ctype" constraint="cvalue" id="constraint-id" />
Constraints defined within a param tag with inline constraint values:

<param constrainttype="ctype" constraint="cvalue" param-attributes />

Choice and Alarm Constraints:

<param constrainttype="ctype" param-attributes>
<constraint key-attributes>cvalue</constraint>

<constraint key-attributes>cvalue</constraint>

</param>

Choice and Alarm Constraints defined within a param tag:

<param constrainttype="ctype" param-attributes />
<constraint key-attributes>cvalue</constraint>

<constraint key-attributes>cvalue</constraint>

</param>

See sections below for examples and syntax for each constraint type.

Constraint Types

Constraint Constraint Type Param Type
Unconstrained INT_NULL INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY
FLOAT_NULL FLOAT_PARAM
FLOAT_ARRAY
Range Constraint INT_RANGE INT16_PARAM
INT_STEP_RANGE INT16_ARRAY
INT32_PARAM
INT32_ARRAY
FLOAT_RANGE FLOAT_PARAM
FLOAT_STEP_RANGE FLOAT_ARRAY
Integer Choice INT_CHOICE INT16_PARAM
Constraint INT16_ARRAY
INT32_PARAM
INT32_ARRAY
String Choice Constraint STRING_CHOICE STRING_PARAM
STRING_ARRAY
Alarm Table ALARM_TABLE INT16_PARAM
INT32_PARAM

DashBoard CustomPanel Development Guide ogScript Reference e 145

Constraint Constraint Type Param Type
Constraint Reference ID_REFERENCE All

Structure STRUCT STRUCT_PARAM
STRUCT_ARRAY

Note If no constraint is specified for a parameter, it will be unconstrained by default.

Refer to the appropriate section below for definition of the constraint object for each constraint type.

constraint (Unconstrained)

Specifies that a parameter is unconstrained. All parameters are considered unconstrained by default if no
constraint is applied.

Syntax

<param constrainttype="constraint-type" attributes />

Attributes

Attribute Values Restrictions Description

constrainttype INT_NULL param type: Parameter is unconstrained
INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

FLOAT_NULL param type:
FLOAT_PARAM
FLOAT_ARRAY

Examples

The following constraint specifies an integer to be unconstrained:

<param constrainttype="INT NULL" name="Delay" oid="0x500"
type="INT16_ PARAM"/>
constraint (Constraint Reference)

References a globally-defined constraint. A constraint may be specified globally in the <meta> block.
These globally-defined constraints may then by referenced by specific parameters.

146 e ogScript Reference DashBoard CustomPanel Development Guide

Syntax

<constraint id="constraint-id" constrainttype="constraint-type">

<param constrainttype="ID_REFERENCE" constraint="constraint-id" attributes />

Attributes
Attribute Values Restrictions Description
id String Unique identifier for this constraint
constrainttype Any valid Param type must = See Constraint Types for valid constraint
constraint type be compatible types.
with the
referenced
constraint.
Examples

The following example creates a global constraint VideoFormat. Params 0x501, 0x502 and 0x503 are
all constrained using this constraint definition.
<constraint constrainttype="INT_ CHOICE" id="VideoFormat">
<constraint key="0">480i-59.94</constraint>
<constraint key="1">576i-50</constraint>
<constraint key="2">1080i-29.97</constraint>
<constraint key="3">1080i-25</constraint>
<constraint key="4">720p-59.94</constraint>
<constraint key="5">720p-50</constraint>
<constraint key="6">1080p-59.94</constraint>
<constraint key="7">1080p-50</constraint>

</constraint>

<param constrainttype="ID REFERENCE" constraint="VideoFormat" name="Vvidl"
0id="0x501" type="INT16_ PARAM"/>

<param constrainttype="ID REFERENCE" constraint="VideoFormat" name="VvVid2"
01d="0x502" type="INT16_PARAM"/>

<param constrainttype="ID REFERENCE" constraint="VideoFormat" name="Vvid3"
01d="0x503" type="INT16_ PARAM"/>
constraint (Range Constraints)

Constrains a numeric parameter type to a specific range. Minimum and maximum values effect the
parameter’s valid range. Display minimum and maximum values scale the parameter value to a different
range for display purposes. Finally a step value can be set to constrain the minimum step size a value
may be changed by.

Syntax
Min / Max Constraint:

<param constraint="min;max;" constrainttype="constraint-type" attributes />

DashBoard CustomPanel Development Guide ogScript Reference e 147

Min / Max Constraint with Display-Min and Display-Max:

<param constraint="min;max;display-min;display-max;"
constrainttype="constraint-type" attributes />

Min / Max Step Constraint:

<param constraint="min;max;step" constrainttype="constraint-type" attributes

/>

Min / Max Step Constraint with Display-Min and Display-Max:

<param constraint="min;max,;display-min;display-max;step"
constrainttype="constraint-type" attributes />

Attributes

Attribute
constrainttype

constraint

Examples

Values

INT_RANGE
INT_STEP_RANGE

FLOAT_RANGE
FLOAT_STEP_RANGE

min

max

display-min

display-max

step

Restrictions

param type:

INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

param type:
FLOAT_PARAM
FLOAT_ARRAY

Required

Required

Optional; must be
used with
display_max.

Optional; must be
used with
display_min.

xxx_STEP_RAN
GE constraints
only

Description
Type of constraint

Minimum value to which a parameter
can be set

Minimum value to which a parameter
can be set

The displayed value of the parameter
when the parameter has a value of
min. The default value is min.

The displayed value of the parameter
when the parameter has a value of
max. The default value is max.

Smallest increment a value may be
changed by. Spinner widgets will
increment a parameter by the step
value. Note that the step increment is
applied to the parameter value, not
the display value.

The following example constrains a FLOAT PARAM to [0,100]:

<param constraint="0.0;100.0;" constrainttype="FLOAT RANGE" name="Delay"
oid="audio.delay" type="FLOAT_PARAM"/>

The following example constrains an integer to [0, 255] mapping it to a display range of [0, 100], and

the value increments by steps of 2:

<param constraint="0;255;0;100;2" constrainttype="INT STEP_RANGE" name="Gain"

oid="keyl.gain" type="INT16_PARAM"/>

148 e ogScript Reference

DashBoard CustomPanel Development Guide

constraint (Integer Choice Constraints)

Choice constraints provide a list of possible values for a parameter, based upon a text selection. For
integer parameters, the parameter may only be assigned a value specified in the constraint.

Syntax
<param constrainttype="INT CHOICE" type="param-type" attributes >
<constraint key="choicel-key">choicel-value</constraint>

<constraint key="choiceZ-key">choiceZ-value</constraint>

</param>
Attributes
Attribute Values Restrictions Description
type INT16_PARAM Parameter must be integer type.
INT32_PARAM
INT16_ARRAY
INT32_ARRAY
key Integer Numeric assignment of current
enumerated choice.
value String Text name for the current enumerated
choice
Examples

The following constraint provides an enumerated choice:
<param constrainttype="INT CHOICE" name="Channel" 01d="0x503"
type="INT16_ PARAM">

<constraint key="0">Channel 01l</constraint>

<constraint key="1">Channel 02</constraint>

<constraint key="2">Channel 03</constraint>

<constraint key="3">Channel 04</constraint>

</param>

constraint (String Choice Constraints)

Choice constraints provide a list of possible values for a parameter, based upon a text selection. For
String parameters, the constraint provides a set of defaults, but the user may arbitrarily enter any other
value for the parameter.

Syntax
<param constrainttype="STRING_CHOICE" type="param-type" attributes >

<constraint>value</constraint>

<constraint>value</constraint>

</param>

DashBoard CustomPanel Development Guide ogScript Reference o 149

Attributes

Attribute Values Restrictions Description
type STRING_PARAM Parameter must be string type.
STRING_ARRAY
value String Available strings for drop-down widget
Examples

The following constraint provides five string options for a String parameter.
<param constrainttype="STRING_CHOICE" name="Name" 0id="0x504"
type="STRING_PARAM">
<constraint>Zeus Test Card</constraint>
<constraint>ZTC</constraint>
<constraint>Johnny</constraint>
<constraint>Matilda</constraint>
</param>

>

Zeus Test Card
Johnny
Matilda

Figure 81 — String Choice

constraint (Alarm Table)

Alarm constraints map a set of alarms as bitfields into an INT16 PARAM or INT32 PARAM. Each bit
represents an independent alarm which may have a message and severity assigned to it. Alarm
parameters contribute to the device’s overall alarm status in DashBoard; the most severe alarm set will
determine the device’s overall reported alarm status.

Syntax
<param constrainttype="ALARM TABLE" type="param-type" attributes >
<constraint key="bit-number" severity="severity">value</constraint>

<constraint key="bit-number" severity="severity">value</constraint>

</param>
Attributes
Attribute Values Restrictions Description
type INT16_PARAM Parameter must be integer type.
INT32_PARAM
key Integer INT16: 0..15 The bit position for the alarm (0 is LSB).
INT32: 0..31
severity Integer The severity of the alarm:
0=0K
1=WARN
2 =ERROR
value String Alarm message text
Examples

The following constraint creates an alarm table:

<param constrainttype="ALARM TABLE" name="Alarm" oid="0x504"

150 e ogScript Reference DashBoard CustomPanel Development Guide

type="INT16_PARAM">
<constraint key="0" severity="0">Hardware OK</constraint>
<constraint key="1" severity="2">Hardware Error</constraint>
<constraint key="2" severity="1">Flash Memory Full</constraint>

</param>

constraint (Struct Constraints)

Struct Constraints allow a parameter to define a complex structure of multiple parameters. The Struct
Constraint is applied to each parameter that is an instance of a Struct.

Syntax

<param constrainttype="STRUCT" structtype="struct-type"
templateoid="template-oid"

type="STRUCT" param-attributes>

Attributes
Attribute Values Restrictions Description
type String Required Set to "STRUCT"
templateoid String Specifies a template OID to pre-populate
the structure. All parameters, constraints
and widgets for the sub-OIDs are copied
from the template.
structtype String Must be unique Defines the structure type. Used by
PanelBuilder to type-check custom
widgets against defined struct
parameters.
Examples

The following code is an example of a struct definition.

<param constrainttype="STRUCT" name="Clip Info" oid="clipInfo"
structtype="playinfo" type="STRUCT" widget="36">
<value>

<subparam name="Clip Name" suboid="ClipName" type="STRING"
value="Test"/>

<subparam name="Director" suboid="Director" type="STRING"
value="Test"/>

<subparam name="Date" suboid="AirDate" type="STRING" value="Test"/>
<subparam name="Author" suboid="Author" type="STRING" value="Test"/>
</value>

</param>

DashBoard CustomPanel Development Guide ogScript Reference o 151

The following declaration utilizes the previous example as a template, by specifying the templateoid
attribute:

<param constrainttype="STRUCT" name="Clip List" oid="clipList"

structtype="playinfo" templateoid="clipInfo" type="STRUCT ARRAY"
widget="36">

<value>
<subparam
<subparam
<subparam
<subparam
</value>
<value>
<subparam
<subparam
<subparam
<subparam
</value>
<value>
<subparam
<subparam
<subparam
<subparam
</value>
<value>
<subparam
<subparam
<subparam
<subparam
</value>

</param>

params

suboid="ClipName" value="Winter is Coming"/>
suboid="Director" value="Tim Van Patten"/>
suboid="OriginalAirDate" value="April 24, 2011"/>
suboid="Author" value="David Benoiff & D.B. Weiss"/>

suboid="ClipName" value="The Kingsroad"/>
suboid="Director" value="Brian Kirk"/>
suboid="OriginalAirDate" value="April 24, 2011"/>

suboid="Author" value="David Benoiff & D.B. Weiss"/>

suboid="ClipName" value="Lord Snow"/>
suboid="Director" value="Brian Kirk"/>
suboid="OriginalAirDate" value="May 1, 2011"/>

suboid="Author" value="David Benoiff & D.B. Weiss"/>

suboid="ClipName" value="A Golden Crown"/>
suboid="Director" value="Daniel Minahan"/>
suboid="OriginalAirDate" value="May 22, 2011"/>

suboid="Author" value="David Benioff & D. B. Weiss"/>

The parent container for parameters defined within the OGLML document. This tag may only contain
<param> tags.

Syntax

<params>

<param param-attributes />

<param param-attributes />

</params>

Attributes

None.

timer

The timer tag fires events at regular intervals. Timers can operate on their own or linked to other timers.

ogScript commands exist to start/stop/reset timers (see ogScript documentation for more details).

Tasks are attached to listener tags to process data received.

Attributes

152 e ogScript Reference

DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description

id String Optional The ID used to reference this timer.
Required for ogScript, child timers, or
external <timertask/> tags to interact
with the timer.

source String Optional. If used, the timer being defined will be a
Must be the ID of = child of the timer with the given ID.

another timer.

rate Long Not applicable if The rate (in milliseconds) at which the
“source” is set. timer fires.

delay Long Not applicable if The delay (in milliseconds) before the
“source” is set. timer initially fires.

pattern String The display pattern for the timer’'s

current time:

https://docs.oracle.com/javase/8/docs/ap
i/javal/text/SimpleDateFormat.html

start Long The start value of the timer. If start >
or time in stop, timer counts down.
format of If start is undefined, the timer is ‘clock
“pattern” mode’

stop Long The start value of the timer. If start >
or time in stop, timer counts down.
format of If start is undefined, the timer is ‘clock
“pattern” mode’

autostart True Default value is Whether or not the timer automatically
*false true if ‘clock starts. If it is not automatically started,

mode’ is used. an ogScript command must be issued to

the timer to start it.

DashBoard CustomPanel Development Guide ogScript Reference e 153

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

listener

The listener tag allows an OGLML page to process network communications using protocols not
already available. It is designed for small and simple protocols only.

The listener tag can work in two different modes: listen for incoming connections (server mode) or
establish a connection (client mode). In both cases, the listener tag will listen for incoming data from
the remote system.

Tasks are attached to listener tags to process data received.

Attribute Values Restrictions Description

connecthost String Cannot be used if The hostname of the remote host to
listenport is connect to.
defined.

connectport Integer Cannot be used if The port to connect to on the remote
listenport is host.
defined.

listenport Integer Cannot be used if The local port to listen on for new

connectport/conn connections.
ect host are
defined.

delimitertype newline Required. The mechanism used to separate one
bytes incoming message from another.
fixedlen “newline” = read bytes until Ox0A is
received
“bytes” = convert value in “delimiter”
attribute into a byte array and wait for
those bytes.
“fixedlen” = read a fixed number of bytes
for each message.
“string” = convert value in “delimeter” into
UTF-8 bytes and wait for those bytes.
“varlen” = convert value in “delimiter” to
an integer “n”. The first [n] bytes of the
message indicate how many bytes
follow.

varlen
string

delimiter May be required The data for the delimiter. Changes
depending on depending on the value of delimitertype

value of bytes: The bytes in the message
delimitertype delimiter. E.g. to listen for a Carriage
Return/Line Feed combination “OD0OA”.

fixedlen: The number of bytes in each
message.

String: The UTF-8 String to wait for to
indicate the end of a message. E.g.
“END”

varlne: The number of bytes to read to
determine message length. E.g. if your
protocol defines a 2-byte length count at
the beginning of each message, the
value would be “2”.

syncword Optional Defines an array of bytes to read at the
start of an incoming message. E.g. for
openGear protocol, the sync word would
be “BAD2ACES5”

154 e ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions

blockingpause true
false

buttontype toggle
none

autostart true
false

Example

Description

When processing tasks, blockingpause
means that all message processing is
done in the message RX Thread. This
means that if a “pause” task is
encountered, all RX of messages will
pause too.

If no button is defined, the listener is
automatically started. If a button is
defined, this allows the user to toggle the
listener off/on.

Whether or not the listener should be
automatically started.

This is always true if no buttontype has
been defined.

<listener autostart="true" delimitertype="newline" listenport="12345">

<task tasktype="ogscript">if (event.isMessageEvent ())

{

var rec = event.getBytesAsString().trim();
var response = '';
for (var i = rec.length - 1; i >= 0; i--)

{

response += rec.charAt(i);

}

this.writeString ('REVERSE: ' + response + '\n', false);

}
</task>
</listener>

task

Defines a block of ogScript to be run when an event happens in the system. Tasks inside of label tags
are fired when the label is clicked. Tasks inside of button tags are fired when the button is pressed.
Tasks inside of listener tags are fired whenever a connection is established or whenever data is

received.

The text content of the tag contains the actual ogScript to be executed.

Syntax

<component>

<task tasktype="task-type">ogScript-code</task>

</component>

DashBoard CustomPanel Development Guide

ogScript Reference e 155

Attributes

Tag Values Restrictions

tasktype *ogscript
robot

vdcp
rosstalk
ogparamset

timercontrol

timertask

Description

This attribute tells the editor user
interface what type of task is contained
in the tag body. Manually-edited tasks
should simply use ogscript.

Defines a block of ogScript to be run when a timer goes off. The timer must be in the same scope as the
timertask. The text content of the tag contains the actual ogScript to be executed.

Syntax

<container>

<timer id="timer-id”/>

<container>
<container>
<timertask tasktype="t
ogScript Code
</timertask>
</container>
</container>
</container>
Attributes
Tag Values Restrictions
tasktype *ogscript
robot
vdcp
rosstalk
ogparamset
timercontrol
timerid String Must match the

id attribute of a
timer tag
accessible in th
tasks’s scope.

ask-type" timerid="timer-id”>

Description

This attribute tells the editor user
interface what type of task is contained
in the tag body. Manually-edited tasks
should simply use ogscript.

Defines the ID of a timer to fire this
timertask. This allows a timer to be
defined at the document root but perform
actions on elements defined much
deeper in the document structure.

is

156 e ogScript Reference

DashBoard CustomPanel Development Guide

include

This tag allows an OGLML document to be assembled from several individual XML files or fragments.
The tag provides a URL, which is retrieved and then replaces the tag with the contents of the referenced

OGLML document.

Syntax

<include src="src"/>

Attributes
Attribute Values
*src URL for http,

https, or “e0”

Restrictions

Description

Points to an OGLML document at the
given URL.

Documents are refreshed when a card is
re-queried (i.e. either card sends an
external object change, or
OGP_RESTART, or user clicks
“refresh”). HTTP fetches use if-modified-
since header and ETag (as defined in
RFC 2616 section 14.25 and 14.19
respectively)

A DashBoard-specific scheme “eo” can
be used to fetch content from an
External Object. Examples would be
“e0://1234” or “e0://0x4D2"). If this
format is used, DashBoard will look for
the OGLML document referenced by the
provided external object (contained
within an OGLML Descriptor).

For more information, see OGLML URLs
on page 53.

Device Resource Declarations

This section describes tags used to declare resources. These tags may be used in a stand-alone XML file

(such as a.ogd or.xml file), or may be embedded within an OGLML document (typically within a

<meta> block).

Resource XML File

Data store resources may be backed by an XML file. Below is an outline of the XML file structure:

<?xml version="1.1" encoding="UTF-8"?>

<frame>
<card>
<params>
<param/>
<param/>

</params>
<statusmenu>
<menu>
<param/>
<param/>

DashBoard CustomPanel Development Guide

ogScript Reference e 157

</menu>

<menu/>

</statusmenu>
<configmenu>
<menu>
<param/>
<param/>

</menu>

<menu/>

</configmenu>
<menugroup>
<menu>
<param/>
<param/>

</menu>

<menu/>

</menugroup>

<menugroup/>

</card>
<card/>

</frame>

Resources within the <card> block may also be declared within an OGLML document, and should be
located within a <meta> block.

commands

Defines an OGP command for a device. OGP commands provide a way to use the OGP connection to

Sends Parameters
OG.P a DashBoard
Device &

Sends Commands

execute commands from other devices.

The primary difference between using commands and parameters, is that the DashBoard OGP Client
does not keep track of the state of the parameters in a command. The value of each parameter is specific
to the execution request. This allows DashBoard to send multiple crosspoint command requests to the
device and each one can have different values for the source/destination.

Once an OGP device has been added to DashBoard, you can use OGP commands to issue device
commands directly from a CustomPanel. For example, the CustomPanel below shows a subset of a
device commands that have been added to a CustomPanel. You can also create workflows using logic
blocks in the Visual Logic Editor or editing the code directly in the ogScript Editor.

158 e ogScript Reference DashBoard CustomPanel Development Guide

Syntax

"commandl": {

"oid": "commandl",
"name": "command 1",
"type": "STRUCT",
"readonly": false,
"widget": "default",
"value":

by

"command2" : {

"oid": "command2",
"name": "command 2",
"type": "STRUCT",
"readonly": false,
"widget": "default",
"value":
}
Attributes
Attribute Values Restrictions
oid String *Required
name String Not required
type String *Required
readonly Boolean Not required
widget String Not required
constraint constraint Not required
Object
config config Object Not required
value String Not required
Examples

Description
Command oid.

Command name.
Data type for the command.
If set to true, the parameter is read-only.

The widget used to dislay the data in
DashBoard.

Parameter Constraint.

Extended parameter configuration.

Value of the parameter. Defines an
argument that can be passed to the
command.

This example shows a command called "SetResolution" thathasa "Resolution argument
that is constrained to the following choices: NTSC, PAL, 720P, and 1080P. The command is also shown

in the Visual Logic Editor below.

Figure 82 —Visusal Logic Representation of the Command

Set Resolution E
Resolution 720P v

"commands" : {

DashBoard CustomPanel Development Guide

ogScript Reference e 159

"SetResolution": {

"oid":"SetResolution",

"name" :"Set Resolution",

"readonly":false,

"type":"STRUCT",

"widget":"default",

"value": [

{
"ResolutionOptions": {
"name" :"Resolution",
"readonly":false,
"type":"STRING",
"widget":"text",
"maxlength":"0",
"totallength":"0",
"constraint": {
"value":"STRING STRING CHOICE",
"choices": [
{
"value":"NTSC",
"key":"NTSC"

"value":"PAL",

"key" s"PAL"™

"value":"720P",
"key" H "720]_)"

"value":"1080P",
"key":"1080P"

1,

"strict":false

by
"value":"720P"

1,

"constraint": {

by

"response":true

160 e ogScript Reference DashBoard CustomPanel Development Guide

command

Defines an OGP command for a device. OGP commands provide a way to use the OGP connection to
execute commands from other devices. For more information, see the entry above.

Syntax
"commandl": {
"oid": "commandl",
"name": "command 1",
"type": "STRUCT",
"readonly": false,
"widget": "default",
"value":
}
Attributes
Attribute Values Restrictions Description
oid String *Required Command oid.
name String Not required Command name.
type String *Required Data type for the command.
readonly Boolean Not required If set to true, the parameter is read-only.
widget String Not required The widget used to dislay the data in
DashBoard.
constraint constraint Not required Parameter Constraint.
Object
config config Object Not required Extended parameter configuration.
value String Not required Value of the parameter. Defines an
argument that can be passed to the
command.

config

Provides a container for extended configuration key-value pairs for elements related to a parameter.
Contents are dependent on other constraints, parameter types or widgets.

Syntax

<param>
<config key="key">value</config>
<config key="key">value</config>

</param>

DashBoard CustomPanel Development Guide ogScript Reference o 161

Attributes

Attribute Values Restrictions Description
key String Configuration parameter name
value String Configuration parameter value
Example

The following config object sets attributes of a graph widget:

<param oid="Fader Bar" right="5" widget="256">
<config key="w.time">5</config>
<config key="w.autoadvance">true</config>
<config key="w.plotbg">#dark</config>
<config key="w.plotfg">#00FF00</config>
<config key="w.grid">#panelfg</config>
<config key="w.hidelegend">true</config>
<config key="w.hidey">false</config>
<config key="w.hidex">false</config>

</param>

constraint

Defines the choice constraint for a parameter. For INT CHOICE constraints, the integer value is defined
with the key attribute and the text to display is the text content of the tag. For STRING CHOICE
constraints, each constraint tag contains a value to populate a combo-box drop-down.

The parameter must have a constrainttype of INT16 CHOICE, INT32 CHOICE or STRING CHOICE.

Syntax

<constraint key="choicel-key">choicel-value</constraint>

Attributes
Attribute Values Restrictions Description
key Integer Not required for Numeric assignment of current
STRING_CHOICE enumerated choice.
constraints
value String Text name for the current enumerated
choice
Examples

The following constraint provides an enumerated choice:
<param constrainttype="INT_ CHOICE" name="Channel" 0id="0x503"
type="INT16_ PARAM">
<constraint key="0">Channel 01</constraint>
<constraint key="1">Channel 02</constraint>
<constraint key="2">Channel 03</constraint>
<constraint key="3">Channel 04</constraint>
</param>

The following constraint provides a list of selections for a STRING parameter:

<param constrainttype="STRING_CHOICE" name="Name" 0i1d="0x504" type="STRING">
<constraint>Jeremy Clarkson</constraint>
<constraint>James May</constraint>

<constraint>Richard Hammond</constraint>

162 e ogScript Reference DashBoard CustomPanel Development Guide

<constraint>The Stig</constraint>
</param>

card
Top-level container for a device within an XML or 0GD file. Encapsulates a device within a . frame file.
Note this tag should not be used as a container within an OGLML document.
Syntax
<card autosave="auto-save"
online="true" slot="slotno" sourceframe="frame-node-id"
sourceframename="device-name" sourceid="card-node-id"
status="status-level" statustext="status-text" version="2.0">
</card>
Attributes
Attribute Values Restrictions Description
autosave true If true, DashBoard will automatically
false save contents of the resources specified
in the file from data store periodically.
online true Sets the device’s online status. Normally
false should be set to true.
slot Integer Defines the slot-id for the device.
sourceframe String node-id of the frame or device.
sourceframename String Name of the device. This is the top-level
name shown in the DashBoard Tree
sourceid String The original node-id of the virtual device
(used when saved as the offline
configuration of a real device)
status 0 Not required for Status OK
1 PanelBuilder Status WARN
2 Status ERROR
statustext String Not required for ~ Status text for the node.
PanelBuilder
version String Setto 2.0.

Default values shown in bold.

DashBoard CustomPanel Development Guide ogScript Reference e 163

Example

The following example defines a device (openGear card) installed in a frame called “Demo Frame”, slot
10. The device’s node id is “172.16.7.230:5253(Slot10)SPG-8260".

<card online="true" slot="10" sourceframe="172.16.7.230:5253"
sourceframename="Demo Frame"
sourceid="172.16.7.230:5253&1t;br>Slot 10&1t;br>SPG-8260"
status="0" statustext="OK" version="2.0">

</card>

frame

Top-level container for a frame within a . frame file. Note this tag should not be used as a container
within an OGLML document. Frame files are created by DashBoard.

Syntax
<frame name="frame-name" sourceid="node-id" >
<card/>
<card/>
</frame>
Attributes
Attribute Values Restrictions Description
Name String Display name of the frame
sourceid String The original node-id of the virtual device
(used when saved as the offline
configuration of a real device)
menu

Defines the controls to place within a menu tab or menu pop-up. <param> tags within the menu block
may override the param’s default attributes for display within this menu.

Synax

<menu menuid="menu-id" menustate="state" name="name" staticid="static-id">
<param/>
<param/>

</menu>

164 e ogScript Reference DashBoard CustomPanel Development Guide

Attributes

Attribute Values Restrictions Description

menuid Integer Required Numeric ID for the menu. Menu tabs
within a menu group are displayed in
numeric order, lowest first. This value
may be changed to dynamically re-order

menus.
menustate 0 Menu is hidden
1 Menu is displayed, but params are read-
only
2 Menu is displayed and params are

read/write (based upon individual
parameter access permissions)

name String Name of the menu. This name will
appear in the menu tab.
staticid Integer Required Unique numeric identifier for this menu.
This value must be only set once and not
changed.
Example

The following example creates a menu called “Network Setup”.

<menu menuid="257" menustate="2" name="Network Setup" staticid="257">
<param access="1" name="Addressing Mode" 0id="0x711"/>
<param access="1" name="IP Address" o0id="0x712"/>
<param access="1" name="Subnet Mask" 0id="0x713"/>
<param access="1" name="Default Gateway" o0id="0x714"/>

</menu>

menugroup

Defines a menu group. The menugroup is a container for menus. When a menugroup is displayed, child
menus are displayed as tabbed elements within the container.

Syntax
<menugroup menuid="id" name="menu-group-name">
<menu/>
<menu/>
</menugroup>
Attributes
Attribute Values Restrictions Description
menuid Integer Required Numeric ID for the menu group. This
value must be only set once and not
changed.
menuid=0 corresponds to the openGear
status menu
menuid=1 corresponds to the openGear
configuration menu
name String Name of the menu group.
Examples

DashBoard CustomPanel Development Guide ogScript Reference e 165

The following example creates a menu group with two menus:

<menugroup menuid="0" name="Status">
<menu menuid="0" menustate="2" name="Status" staticid="0">
<param access="0" name="Card Status" o0id="0x201"/>
<param access="0" name="Reference" o0id="0x204"/>
</menu>
<menu menuid="1" menustate="2" name="Product Info" staticid="1">
<param access="0" name="Product" o0id="0x105"/>
<param access="0" name="Name" o0id="0x107"/>
<param access="0" name="Supplier" o0id="0x102"/>
<param access="0" name="Software Rev" 0id="0x10B"/>
</menu>

</menugroup>

statusmenu

Defines the Status Menu group for the default openGear menu layout. This tag behaves in the same
manner as the <menugroup> tag when the menuid=0.

Syntax
<statusmenu menuid="id" name="menu-group-name">
<menu/>
<menu/>
</statusmenu>
Attributes
Attribute Values Restrictions Description
menuid Integer Optional. Should Numeric ID for the menu group. This
be set to 0. value must be only set once and not
changed. Defaults to 0.
name String Name of the menu group.

166 e ogScript Reference DashBoard CustomPanel Development Guide

Example

The following example creates a status menu group with two menus:

<statusmenu menuid="0" name="Status">
<menu menuid="0" menustate="2" name="Status" staticid="0">
<param access="0" name="Card Status" o0id="0x201"/>
<param access="0" name="Reference" o0id="0x204"/>
</menu>
<menu menuid="1" menustate="2" name="Product Info" staticid="1">
<param access="0" name="Product" 0id="0x105"/>
<param access="0" name="Name" 0id="0x107"/>
<param access="0" name="Supplier" o0id="0x102"/>
<param access="0" name="Software Rev" 0id="0x10B"/>
</menu>

</statusmenu>

configmenu

Defines the Config Menu group for the default openGear menu layout. This tag behaves in the same
manner as the <menugroup> tag when the menuid=1.

Syntax
<configmenu menuid="id" name="menu-group-name'">
<menu/>
<menu/>
</configmenu>
Attributes
Attribute Values Restrictions Description
menuid Integer Optional. Should Numeric ID for the menu group. This
be set to 1. value must be only set once and not
changed. Defaults to 1.
name String Name of the menu group.
Example

The following example creates a status menu group with 2 menus:

<configmenu menuid="1" name="Status">
<menu menuid="513" menustate="2" name="Network Setup" staticid="257">
<param access="1" name="Addressing Mode" o0id="OxFE1ll"/>
<param access="1" name="IP Address" oid="0x712"/>
<param access="1" name="Subnet Mask" o0id="0x713"/>
<param access="1" name="Default Gateway" o0id="0x714"/>
</menu>

<menu menuid="514" menustate="2" name="Remote Control Setup"
staticid="258">

<param access="1" name="Protocol" oid="0x411"/>

<param access="1" name="Baud Rate" o0id="0x412"/>

<param access="1" name="Parity" oid="0x413"/>

<param access="1" name="Stop Bits" 0id="0x414"/>
</menu>

</configmenu>

DashBoard CustomPanel Development Guide ogScript Reference e 167

params

The parent container for parameters defined within the OGLML document. This tag may only contain
<param> tags.

Syntax

<params>
<param param-attributes />

<param param-attributes />

</params>

Attributes

None.

param

Creates a parameter descriptor, which defines the parameter. Declaration of a param descriptor must be
located within a <params> block. Constraints for the param may be included as an attribute (for range
constraints), or as child tags (for choice constraints).

Syntax

<param oid="oid" attributes/>

<param oid="oid" attributes>

<constraint/>
<constraint/>
<config/>
<config/>
</param>
Attributes
Attribute Values Restrictions Description
oid String Required, except The OID of the parameter (can be used
for subparams to override an existing parameter).
suboid String Required for If the param declaration is a sub-param
subparams within a struct, the OID is specified in the
suboid attribute.
access 0 Parameter is read-only in DashBoard
1 Parameter is read-write in DashBoard
name String Parameter Name
widget Positive integer Must be a valid Defines the default widget hint for the
widget hint param.
maxlength Positive integer Applies only to The maximum length of any String
String/String element in the parameter.
Array parameters
precision Positive integer This field defines the number of digits

following the decimal point displayed for
printed numbers. It applies mainly to
floating point numbers.

168 e ogScript Reference DashBoard CustomPanel Development Guide

Attribute
type

constraint
constrainttype

stateless

value

config

Values
INT16

INT16_ARRAY

INT32
INT32_ARRAY

STRING
STRING_ARRAY
FLOAT32
FLOAT32_ARRAY

STRUCT
STRUCT_ARRAY
BINARY_VALUE
Cvalue

Ctype

False

True

Varies

Varies

Default values shown in bold.

Example

Restrictions

Value type must
be compatible
with the specified
type.

Description
Param is 16-bit signed integer.

Param is an array of 16-bit signed
integer.

Param is 32-bit signed integer.

Param is an array of 32-bit signed
integer.

Param is a string.
Param is an array of strings.
Param is a 32-bit (IEEE single) float.

Param is an array of 32-bit (IEEE single)
float.

Param is a struct.

Param is an array of struct.

Param is of unknown type.

See constraint tag for more details.

See constraint tag for more details.
Parameters are saved to backing source
Parameters are not saved

Specifies the initial value of the param.
Arrays may be initialized by separating
values with ";".

Provides additional widget configuration
parameters.

<param access="1" maxlength="0" name="Message" oid="Message" type="STRING"
value="Reverse this message" widget="3"/>

DashBoard CustomPanel Development Guide

ogScript Reference e 169

param (struct)

Compound parameters may be defined through the use of the STRUCT param type. A struct contains a
collection of parameters. Structs may not be nested. Struct must have a constrainttype of STRUCT.
Members of the struct are declared through subparam tags within the value tag.

A struct may also use another param as a template to pre-populate the member sub-param declarations.
This is done through the templateoid attribute.

Syntax
<param constrainttype="STRUCT" oid="oid" type="STRUCT" attributes>
<value>
<subparam suboid="sub-o0id" sub-param-attributes/>

<subparam suboid="sub-o0id" sub-param-attributes/>

</value>
</param>
Attributes
Attribute Values Restrictions Description
oid String Required The OID of the parameter (can be used
to override an existing parameter).
access 0 Parameter is read-only in DashBoard
1 Parameter is read-write in DashBoard
name String Parameter Name
widget Positive integer Must be a valid Defines the default widget hint for the
widget hint param.
type STRUCT Must be set to STRUCT.
structtype String Defines the structure type. Specifies a
dependency of a widget upon a global
struct parameter with matching
structtype. Currently this type checking
is restricted only to PanelBuilder Ul; a
custom widget will only be available in
PanelBuilder if a parameter exists with
matching structtype.
templateoid String Specifies a template struct parameter to
pre-populate the subparams.
constrainttype STRUCT Must be set to STRUCT
value Container for subparam elements.
subparam param May not be a Member parameters, declared using the
nested struct same syntax as a param declaration,
param with the exception that its oid is specified

in the attribute suboid.

Default values shown in bold.

170 e ogScript Reference DashBoard CustomPanel Development Guide

Example

The following declares a struct parameter.
<param access="1" constrainttype="STRUCT" name="Clip Info" oid="clipInfo"
type="STRUCT" widget="36">

<value>

<subparam name="Clip Name" suboid="ClipName" type="STRING"
value="Test"/>

<subparam name="Director" suboid="Director" type="STRING"
value="Test"/>

<subparam name="Air Date" suboid="AirDate" type="STRING"
value="Test"/>

<subparam name="Author" suboid="Author" type="STRING" value="Test"/>
</value>

</param>

The following declares an array of struct params, using the previous example as its template. Note that
any attributes specified explicitly will override the values provided in the template.

<param access="1" constrainttype="STRUCT" name="Clip List" oid="clipList"
templateoid="clipInfo" type="STRUCT ARRAY" widget="36">

<value>

<subparam suboid="ClipName" value="Winter is Coming"/>

<subparam suboid="Director" value="Tim Van Patten"/>

<subparam suboid="AirDate" value="April 24, 2011"/>

<subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
</value>
<value>

<subparam suboid="ClipName" value="The Kingsroad"/>

<subparam suboid="Director" value="Brian Kirk"/>

<subparam suboid="AirDate" value="April 24, 2011"/>

<subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
</value>
<value>

<subparam suboid="ClipName" value="Lord Snow"/>

<subparam suboid="Director" value="Brian Kirk"/>

<subparam suboid="AirDate" value="May 1, 2011"/>

<subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
</value>

</param>

DashBoard CustomPanel Development Guide ogScript Reference o 171

Device Resource Tags

The following tags use resources provided by the same device that sent the OGLML document to
DashBoard.

The following tags can be used to incorporate standard openGear Ul elements into an OGLML
document. For example the typical device page is composed of the following tagged resources.

<menugroup mid="1"/>

<summary>

Setup String Choice Numeric Arrays Progress Text
ONLINE

Product Hardware Test

< param/>

Card Name Zeu:
. Extra Menu Login
<menu/> Product ZTC
Menu
Supplier
Board
Serial Number

Software Rev

Refresh Upload Reboot Close

<buttonbar/>

Figure 83 — Device Resource Tags
Note that the tags described in this section add a control to the Ul for manipulating the underlying
resource. These must be contained within a Ul layout container.

Many of the tags are also used to define the underlying resource in the data store. Declarations may be
contained within a <meta> block of an OGLML or stand-alone XML file.

172 e ogScript Reference DashBoard CustomPanel Development Guide

menugroup

This tag is used to incorporate a top-level menu group as a single component. This includes all sub-
menus and parameters that would appear in a default-layout OGP menu.

Syntax

<menugroup mid="id" />

Attributes
Attribute Values Restrictions Description
Mid integer Must be a defined menuid of a defined menu.
top-level menu. 0 = Status Menu
1 = Configuration Menu
2 ="“Extra” Menu
menu

This tag provides a mechanism to display a standard OGP Menu in two different ways:
e Display the entire menu as a single component

e Create a clickable button to display the menu in a balloon dialog (similar to a tool tip).

Syntax

<menu mid="menu-id" popup="popup-flag" oglml="oglml-flag"
tabposition="position" GeneralAttributes />

Attributes

In addition to General Attributes, the following attributes may be specified to the <menu> tag:

Attribute Values Restrictions Description
Mid integer Must be a defined The static ID of the OID Menu to draw.
OID Menu.
Popup true name attribute A button with the name attribute as its
must also be label is the component. When pressed,
specified. the menu will appear in a balloon dialog.

For more information, see
WIDGET MENU POPUP (20) on page

32.
false The menu is included as a single
component.
Ogliml true If the referenced menu has been

overridden by an OGLML page, the
OGLML version of the menu will be
used.

false The standard OGP menu without any
OGLML will be used.

DashBoard CustomPanel Development Guide ogScript Reference o 173

Attribute Values Restrictions Description

Tabposition north How the tabs are Specifies the placement of the tabs for
east rendered within any 3"-level submenus.
their quadrant is
south deter?nined by N
west the look and feel
(i.e. whether the w E
tabs fill the
available space, S

are positioned to
the left, right, or
center of the
space, etc.)

Default values shown in bold.

param

Displays a widget to display and manipulate a param. Must be placed within a layout container tag. If
the param is an array, multiple widgets are displayed (one for each element).

Syntax

<param oid="oid" attributes/>

<param oid="oid" attributes>

<constraint/>
<constraint/>
<config/>
<config/>
</param>
Attributes
Attribute Values Restrictions Description
Showlabel true Display the parameter name as a label
false beside the parameter elements.
Oid String Must be a defined The OID of the parameter to show.
oD
*mid String Must be the static This is used to determine the user rights
menu ID of a for a parameter. The menu with the a
defined OID staticid matching the specified mid is
Menu. treated as the parent menu of the

parameter when checking read/write
rights and whether it is on a status menu
or a configuration menu.

If no mid is defined, the parameter is
always rendered as though it is on a
configuration menu with full read/write
rights.

174 o ogScript Reference DashBoard CustomPanel Development Guide

Attribute
Element

Widget

Expand

Constrainttype

Onchange

Relative

Values

List of array
indices
separated by
commas

Positive integer

true
false

INT_CHOICE
or

eo:/lexternal-
object-OID

ogScript String

true

false

Default values shown in bold.
*mid is optional but its use is strongly recommended for User Rights Management support.

Restrictions

All array
elements
referenced must
exist in the

parameter value.

The value must

be a widget hint
defined for the

parameter’s type

Only applies to
radio and toggle
button
parameters.

Can only be
applied to
parameters that
already use
choice
constraints.

Description

By default all elements of an array
parameter are returned. This attribute
can be used to return a subset of the
array. If a list is provided, only the
elements at the provided indices are
returned (note- you can specify the
elements in any order).

This value should either be “0” or should
not be provided for a non-array
parameter.

By default, the widget hint provided by
the parameter will be used. This
attribute can be used to override the
parameter’s widget hint with another
one.

Return each radio or toggle button
created by a choice constraint as a
separate element.

Allows a device developer to override
the choice constraint defined in the OGP
Parameter Descriptor.

The parameter must either contain the
available choices in constriant tags
inside of the param tag or an external
object URL pointing to an external object
that contains an integer choice
constraint.

The provided snippet of ogScript is
triggered when the parameter value
changes. A ParamScriptable object
named this is created within the
context of the onchange to view and
manipulate the param.

Parameter is interpreted as a relative
parameter within a widget. The widget
instance’s baseOID will be prefixed to
the param OID to create a fully-qualified
OID.

DashBoard CustomPanel Development Guide

ogScript Reference e 175

constraint

Overrides the choice constraint for a parameter. For INT CHOICE constraints, the integer value is
defined with the key attribute and the text to display is the text content of the tag. For STRING CHOICE
constraints, each constraint tag contains a value to populate a combo-box drop-down.

The parameter must have a constrainttype of INT16 CHOICE, INT32 CHOICE or STRING CHOICE.

Syntax

<constraint key="choicel-key">choicel-value</constraint>

Attributes
Attribute Values Restrictions Description
Key Integer Not required for Numeric assignment of current
STRING_CHOIC enumerated choice.
E constraints
Value String Text name for the current enumerated
choice
Examples

The following constraint provides an enumerated choice:
<param constrainttype="INT CHOICE" name="Channel" 0i1d="0x503"
type="INT16_PARAM">
<constraint key="0">Channel 01l</constraint>
<constraint key="1">Channel 02</constraint>
<constraint key="2">Channel 03</constraint>
<constraint key="3">Channel 04</constraint>
</param>

The following constraint provides a list of selections for a STRING parameter:
<param constrainttype="STRING_CHOICE" name="Name" 01d="0x504" type="STRING">
<constraint>Jeremy Clarkson</constraint>
<constraint>James May</constraint>
<constraint>Richard Hammond</constraint>
<constraint>The Stig</constraint>
</param>

buttonbar

Creates the button bar containing the “Refresh”, “Upload”, “Reboot”, and “Close” buttons. Normally
this appears at the bottom of a Device Tab. Only a single instance of this tag is permitted per OGLML
document.

Syntax

<buttonbar/>

176 e ogScript Reference DashBoard CustomPanel Development Guide

Attributes

None.

Example

The following displays the button bar:

<buttonbar/>

Refresh Upload Reboot

Figure 84 - <buttonbar/> tag

editor

Inserts the editor UI of another device node from the DashBoard Tree into the current container. The
editor tag may insert either the full editor UI or a compact summary.

Syntax
<editor objectid="object-id" template="template-style" widgetroot="root-flag"
/>
Attributes
Attribute Values Restrictions Description
Objected String ID of the device node to insert
Template summary Inserts a summary panel for the device.
Widgetroot Boolean Everything inside of the editor must be
kept together. Individual elements
cannot be dragged out to other panels.
Example

The following inserts the full U for device with id 00.0f.9b.00.00.26 (Slot 0)MFC-8310:

<editor objectid="00.0£.9b.00.00.26&1t;br>Slot 0&1lt;br>MFC-8310"
widgetroot="true" />

The following inserts a summary panel for the device:

<editor objectid="00.0£.9b.00.00.26&1t;br>Slot 0&1lt;br>MFC-8310"
template="summary" widgetroot="true" />

Slot 0: MFC-8310-N
Card state: @ OK

Connection: @ ONLINE

Open Editor

Figure 85 — Summary Editor

DashBoard CustomPanel Development Guide ogScript Reference o 177

summary

Creates the standard card status panel with card name, online state, and overall card status.

Syntax

<summary/>

Attributes

None.

Example

The following displays the summary panel for a device:

<summary/>
Slot 3: 7TC-8399
Card state: @ OK
Connection: @ ONLINE
Figure 86 - <summary/> tag
statuscombo

Display a status icon for a single or multiple items from the DashBoard Tree View. When the status
icon is clicked, a list of tree nodes is expanded; these nodes can be then clicked to open the editor for
that node.

This is largely intended to be created by dragging/dropping items from the DashBoard Tree View or
Advanced Tree View into a PanelBuilder CustomPanel document.

A hierarchy of <treeobject/> elements with the same attributes allows you to create combined status
items.

Syntax

<statuscombo attributes>
<treeElement name="node-name" objectid="node-id" />
<treeElement name="node-name" objectid="node-id" />

</statuscombo>
Attributes
Attribute Values Restrictions Description
Objected String Must be the The node-id of the element in the tree to
node-ID of a display. If the object has children, they
node in are automatically shown under the node.
DashBoard tree
view
Name String The display name of the item.

178 e ogScript Reference DashBoard CustomPanel Development Guide

Example

The node-id of a node in the Tree View may be obtained by right-clicking the node and selecting “View
Connection Settings”.

Connectien Information ®

Slot 3: ZTC-8399

Property Value

Connection Settings

wvalid true

node-id 172.16.9.31

address 172.16.9.31: 5253

port 5253

node-name Jim's Frame

servicelrl service:broadcast-equipment
equipmentType opengear

discoveryType SLP

Separate Mode Info
i node-id 172.16.9.31:5253
Slot 3
ZTC-8399 |

Figure 87 — Connection Settings

The following code creates a statuscombo with 2 nodes:

<statuscombo grid="false" left="448" name="Favorite Cards" top="118">

<treeElement name="Slot 3: ZTC-8399"
objectid="172.16.9.31:5253&1t;br>Slot 3
ZTC-8399"/>

<treeElement name="Slot 5: SRA-8602"
objectid="10.1.9.36:5253
Slot 5
SRA-8602"/>

</statuscombo>

The result appears in DashBoard as:

Figure 88 — statuscombo

When clicked, it expands as follows:

Eaynrita Marde

Slot 3: ZTC-

Figure 89 — statuscombo expanded

DashBoard CustomPanel Development Guide ogScript Reference e 179

If the specified treenode has child nodes, it will appear as follows:

Down Converter »

Slot 3: ZTC-8399: OK

-A- Audio Status AES Input Mot Present

Figure 90 — statuscombo with child nodes

Macro Expansion

DashBoard includes several pre-defined macros which expand into specific useful information. The
following macros are supported:

Macro
Y%frame%

Y%device%
%slot%

Y%value%

Y%owidget% %widget%
Yoconst¥

flabel name="The son
is
%const['family']['son
L}] %"/>

%baseoid% %baseoid%
Y%fully-qualified-id%
Y%panel-path%
Y%app-path%

%id%

Y%evallogscript]%

Description
Expands to the node-id of the current frame

Expands to the node-id of the current device or card node
Expands to the node-id of the specified slot within the current frame
Expands to a parameter’s value

Expands to a widget'’s id

Expands to a lookup value

Expands to a widget’s baseOID

Expands to the full element id hierarchy
Expands to the path of the current CustomPanel
Expands to the DashBoard installation directory
Expands to the id of the current component

Performs a regular expression expansion

180 e ogScript Reference

DashBoard CustomPanel Development Guide

%frame%

Expands to the node-id of the frame within the current context.

Syntax

$frame%

Example

<label name="frame node-id is %frame%"/>

frame node-id is 00.0f.9b.01.05 2¢

Figure 91 - %frame% macro

%device%

Expands to the node-id of the current device within the current context.

Syntax

$device%

Example

<label name="device node-id is %device%"/>

device node-id is 00.0f 9b.01.05_2c<br=Slot 8<br=7TC-5399

Figure 92 - %device% macro

%slot%

Expands to the node-id of the specified slot within the frame in the current context.

Syntax

%$slot slot-number$%

Parameters
Parameter Values Restrictions Description
slot-number Integer Must be a valid slot = Slot number of the device whose node-
number withinthe id is to be returned.
current frame
Example

<label name="slot 2 node-id is %slot 2%"/>

slot 2 node-id is 00.0f 9b.01.05_2c<br=5Slot 2<br=UDA-87054

Figure 93 - %slot% macro

%value%

Expands to the value of a specified parameter.

DashBoard CustomPanel Development Guide ogScript Reference o 181

Syntax

$value ['param-oid'][element]%
Parameters
Parameter Values Restrictions Description
param-oid String The OID of the parameter whose value
is returned
element Integer The array index to return. For non-array
parameters this must be set to 0.
Example

The following displays the value of a parameter:

<label name="the value of myParam is %value['myParam'][0]%"/>

The following example utilizes the $value$ macro to allow the value of one parameter to specify
which parameter to process. The parameter OIDName specifies the OID of the parameter which is
displayed in the line below. Note that when the parameter OIDName is changed, it is necessary to
manually reload the elements which display the results (1abell and 1abel?2), as the $value% macro is
expanded only when the control is rendered.
<params>

<param name="OID Name" oid="OIDName" type="STRING" value="testOID2"/>

<param name="test OID1" oid="testOID1" type="STRING" value="Fred"/>

<param name="test OID2" oid="testOID2" type="STRING" value="George"/>

</params>

<abs>
<param left="382" oid="params.OIDName" widget="3" width="243">
<task tasktype="onchange">
ogscript.reload ("labell");
ogscript.reload ("label2");

</task>
</param>
<label id="labell" 1left="382" name="The value of %value['OIDName'][0]%
is"/>
<param id="label2" left="575" oid="%value['OIDName'][0]%" widget="1"/>
</abs>

testOID1 testOID2

The value of testOID1 is The value of testOID2 is

Figure 94 - %value% macro

182 e ogScript Reference DashBoard CustomPanel Development Guide

%widget%

Expands to the id of widget within the current context.

Syntax

Swidget$

Example

If used within a widget, the following displays the widget’s ID:

<label name="the value of myParam is Swidget$%"/>

%const%

Expands to the value of a lookup. The lookup must have a specified id.

Syntax
Sconst['id'] ['key']lS
Parameters
Parameter Values Restrictions Description
id String Must be an id ID of the lookup tag.
defined in a
<lookup> tag
key String Must be a valid Key within the lookup tag whose value
key within the will be returned.
specified lookup.
Example

Given the following lookup:
<lookup id="family" scope="private">
<entry key="father">Homer Simpson</entry>
<entry key="son">Bart Simpson</entry>
<entry key="mother'">Marge Bouvier-Simpson</entry>
<entry key="daughter">Lisa</entry>
<entry key="baby">Maggie</entry>
</lookup>

The following code will display the label “The son is Bart Simpson”.

<label name="The son is %const['family']['son']%"/>

DashBoard CustomPanel Development Guide ogScript Reference e 183

%baseoid%

Expands to the value of the baseOID attribute of the current widget.

Syntax

$baseoid$

Example

If you have a widget with a baseoid of params.audio.channels.1 with parameters for signal presence,
EQ, etc., you could attach change handlers to them as follows:

<ogscript handles="onchange" oid="%$baseoid%.eq" element="0">
ogscript.debug ('EQ has changed for %$baseoid%:' + this.getValue());
</ogscript>

%fully-qualified-id%

Expands to the fully-qualified id of the current context. If the current context is nested within other
contexts, the hierarchy is expressed, separated by “.”. Note that only containers with a specified id are
included in the expansion.

Syntax
$fully-qualified-id%

Example
<abs id="absl">
<abs>
<abs id="abs2">
<label name="The fully qualified ID is %fully-qualified-id%"/>

</abs>
</abs>
</abs>
ThE.m”y'qUE“ﬁEd|Di5 abs1.abs2
Figure 95 - %fully-qualified-id% macro
%panel-path%

Expands to the folder path which contains the current OGLML document.

Syntax
$panel-path%

Example

<label name="panel path is %$panel-path%" />

panel path is file:/C:/CustomPanels/

Figure 96 - %panel-path% macro

%app-path%

Expands to the folder path which the current instance of DashBoard is installed.

184 e ogScript Reference DashBoard CustomPanel Development Guide

Syntax
%app-path%

Example

<label name="DashBoard is installed in %app-path%" />

DashBoard is installed in filez/C:/DashBoard Betal

Figure 97 - %app-path% macro

%id%
Expands to the id of the current context.

Syntax

oe

id

oe

Example

<label height="62" left="0" name="Click to see my context's ID" style="txt-
align:center;" top="0" width="291">

<task tasktype="ogscript">ogscript.debug('My Context\'s ID is
"$id%s"') ;</task>

</label>
%eval[ogscript]%
Evaluates the ogscript and replace the %eval[ogscript]% with the value returned by the script.

Syntax

%eval [ogscript]l%

Example
<label height="62" left="0" name="%eval[var text = ''; for (var i = 0; 1 <
10; i++) {text += 1 + ' ';} text.trim();]%" style="txt-align:center;" top="0"

width="291"/>

Figure 98 - %eval[ogscript]% macro

DashBoard CustomPanel Development Guide ogScript Reference o 185

ogScript Reference

About ogScript

Ross Video ogScript is a programming language developed by Ross Video to interact with DashBoard-
enabled devices.

It also enables you to add functionality and logic to custom panels you create in DashBoard.

Ross Video ogScript uses JavaScript functions, syntax, and primitive object types. To enable CustomPanel
developers to interact with panels and devices, ogScript adds some new global objects to JavaScript.
Most JavaScript works in ogScript scripts, although you might run across an occasional item that does
not work.

For information about ogScript objects and functions, refer to the topics in this section. For information
about JavaScript commands and syntax, search for “JavaScript Reference” on the World Wide Web.

This section contains information about ogScript objects and functions. It includes the following major
sections:

e ogscript Object

e params Object

e ParamScriptable Object
e rosstalk Object

e rosstalkex Object

e robot Object

e vdcp Object

e nkScript Object

e webcam Object

e NDI Object

e RPM Object

JavaScript

Ross Video ogScript is a programming language developed by Ross Video to interact with DashBoard-
enabled devices. It uses JavaScript functions, syntax, and primitive object types. To enable
CustomPanel developers to interact with panels and devices, ogScript adds some new global objects to
JavaScript. Most JavaScript works in ogScript scripts, although you might run across an occasional item
that does not work.

For information about ogScript objects and functions, refer to the sections in this guide. For information
about JavaScript commands and syntax, search for “JavaScript Reference” on the World Wide Web.

186 e ogScript Reference DashBoard CustomPanel Development Guide

Commonly Used Functions

Ross Video recommends that you first learn the following commonly used functions:

Ogscript

e debug

e rename
params

e getValue

e setValue

Functions Set in the User Interface

Functions in the following objects are typically set through a user interface:
e rosstalk Object

e robot Object

e vdcp Object

e multiSetScriptable Object

e nkScript Object

multiSetScriptable Object

In ogScript, use the multiSetScriptable object to change the values of multiple parameters at once.
To create a multiSetScriptable object, use:

params.createMultiSet () ;

For example:

params.createMultiSet ('This is a message');

The following table lists the functions of the multiSetScriptable object. Detailed descriptions appear
after the table. If you are reading this document on-screen, click a function name in the table to view its

description.

Function Parameters Returns Description

execute N/A Boolean Execute the multiSet. Returns true if
execution was successful; otherwise
false.

setAllValues Object [OID], Object [] [Values] N/A Update all values of the parameter with
the specified OID using the values from
the object array.

setValue Object [OID], Int [Index], Object [Value] N/A Update the specified index using the

value object.

DashBoard CustomPanel Development Guide ogScript Reference o 187

ogscript Object

In ogScript, use the ogscript object to access a library of general-purpose functions. To call a general-

purpose function, use:

ogscript.function name (parameters);

For example:

ogscript.debug

('This is a message');

The following table lists the functions of the ogscript object. Detailed descriptions appear after the table.
If you are reading this document on-screen, click a function name in the table to view its description.

Function Parameters
addOnClose Function Reference
addRemoteTrigger String [Function]

String [Trigger ID]
String [Trigger Name]
appendXML String [Container ID]
String [XML snippet]
asyncExec Function Reference
Long [Delay]
asyncFTP String [Host]

asyncFTPGet

Integer [Port]
String [Username]
String [Password]
String [destPath]
String [destName]
Boolean [Binary]

String [sourceFilePath]

Function reference
[Callback]

String [Host]
Integer [Port]
String [Username]
String [Password]
String [srcPath]
String [srcName]
Boolean [Binary]

String [destFilePath or

null]

Function reference
[Callback]

Returns
N/A

Returns an object that
contains one function
named close. When
executed, close removes
the function.

N/A

N/A

N/A

N/A

Description

Runs a function when the panel is
closed.

‘closed' means that the tab is
closed, DashBoard is closed, or the
panel is reloaded.

Allows remote execution of a script
inside of a CustomPanel through the
RossTalk GPI command.

Function can be removed by calling
close on the object returned.

Adds a section of OGLML code to
the panel identified by the Container
ID parameter. The OGLML is added
during runtime and does not affect
the .grid file.

Valid only in <abs/> containers.

Executes a function outside of the
Ul current thread.

Sends a file to an FTP server.

Retrieves a file from FTP server.

188 e ogScript Reference

DashBoard CustomPanel Development Guide

Function
asyncFTPListFiles

asyncHTTP

asyncPost

cancelTimer

closePanel

colorToHSL

copyByteArray

copyText

createAMPSender

createAsyncExec

createByteArray

createFilelnput

Parameters

String [Host]
Integer [Port]
String [Username]
String [Password]
String [Path]
String [fileName]
Boolean [Binary]
Function reference
[Callback]

String [URL]
Integer [Method]
String [Content_Type]
Object [Data]

Function reference
[Callback]

String [URL]
String [HTTP Post Data]

Function [Callback
Function]

Boolean [include
response]

Timer ID

N/A

Integer [Color]
String [Color]

Byte array [Src]
Integer [Offset]
Integer [Length]

String [Text

N/A

String [Thread ID]

Integer [Length]

String [File path]

Returns

An array of FTPFile
objects

N/A

N/A

N/A

N/A

A float array containing
the HSL version of the
color parameter

byte array

N/A

An AMPCommands
object

An asynchronous thread
with the specified ID if it
was created, null
otherwise

An empty byte array

FileInputParser (like
MessageParser but with
getSize(), close(), and
isClosed()

Description

Asynchronously gets a list of all files
at a specified directory on an FTP
server.

Send an asynchronous request to
the given URL. Call the given
function when the request has
completed. The data retrieved from
the HTTP request is passed as a
string as the first variable in the
method.

If the MIME type of the HTTP
response is image or binary, the
result will be a byte array containing
what is fetched.

Send an asynchronous post to the
given URL.

Cancel, stop and clean-up, a timer
with the given ID.

Closes the DashBoard panel that
the command was called from.

Converts an RGB color to an HSL
color.

Creates a full or partial copy of a
byte array.

Copies text to the operating
system's clipboard.

Creates a library of commands for
controlling video servers using the
Advanced Media Protocol (AMP).

Creates a new asynchronous
thread with the specified ID.

Creates an empty byte array of a
specified size.

Access a file as a byte array with
the same capabilities as
MessageParser to read raw bytes

DashBoard CustomPanel Development Guide

ogScript Reference o 189

Function Parameters Returns Description

createFileOutput String [File path] FileOutputBuilder, which ~ Create a new file or append to an
Boolean is same as existing file. Instead of saving XML
[appendToExistingfile] MessageBuilder with or string data, gives access to write
added functions for clear() raw bytes (or strings, or shorts, or
(overwrite file), close(), ints, etc.). Also gives the ability to
getSize(), flush(), and append to a file. Once open, it does
isClosed() not close the file until the panel is

closed or close() is called. This is
handy for logging.

createlistener String [ID] An IServerWithClose Create a new listener with its own
Object [Listener Settings] ~ Object, which contains ID, settings, and task.
functions close, setPort,

Function reference
start, and stop

[Listener Task]

createMessageBuilder N/A Returns a Creates a message builder, which
MessageBuilder object enables you to construct a
used to build byte arrays message.
(generally for creating
network messages).

createMessageParser messageBytes Returns a MessageParser Creates a message parser, which
object (generally used to enables you to parse a message.
parse the various pieces
of messages received
over the network).

createVDCPSender N/A A VDCPCommands Creates a library of commands for
object. using the video disk control protocol
(VDCP).
debug String [Message] N/A Write a string to the openGear
Debug Information View.
fireGPI String [Trigger] N/A Sends Trigger GPI string [trigger] to
String [State] execute component task lists.
Boolean [Global] Sends optional [state] data string,

which can be read by the script.
When [global] value is 'true’,
applies to all open panels.

When [global] is 'false’, applies only
to the current active panel.

focus String [ID] N/A Sets the focus to a component with
a specified ID.

ftp String [Host] An FTPResponse object Saves an object to a destination
Integer [Port] which contains a boolean path on an FTP server. Useful to
String [Username] 'success', an object 'data’, store statistics, images, and any

. and an exception 'ex’ other data on a server.

String [Password]
String [Destination Path]
String [Destination Name]
Boolean [Binary]
Object [Data]

ftpGet String [Host] An FTPResponse object Gets a file from the source path on
Integer [Port] which contains a boolean an FTP server, and stores it in the
String [Username] 'success', an object 'data’, destination object. Useful to grab

and an exception 'ex’ statistics, images, or any other data

String [Password]
String [Source Path]
String [Source Name]
Boolean [Binary]
Object [Destination File]

from a server.

190 e ogScript Reference DashBoard CustomPanel Development Guide

Function
ftpListFiles

getAllByld

getApplicationPath

getAsyncExecByld

getAttribute

getBrowserByld

getBuild

getComponentsByld

getContextld

getCurrentUser

getFile

getFileSize

getimageByld

getincludeByld

Parameters
String [Host]
Integer [Port]
String [Username]
String [Password]

String [Source Path]

String [File Name]
String [Object 1D]

N/A

String [Thread ID]

String [Attribute ID]

String [Browser ID]

N/A

String [Object 1D]

N/A

N/A

String [filePath]

String [filePath]

String [Image ID]

String [Include ID]

Returns

Returns an array of
FTPFile objects

Object []

A String representation of
the path to the
DashBoard installation
location

An asynchronous thread
with the specified ID if
one was found; otherwise
null

Object

If found, returns a
browser element with the
specified ID, null
otherwise

DashBoard version
number (same value that
appears in Help>About
DashBoard)

Component []

A string representation of
the context ID if it exists;
otherwise null

String

The File object found at
the specified path if it was
found, null otherwise

A long equal to the size of
the file in bytes

An image if one matching
the ID was found, null
otherwise.

IncludeReloadableContai
ner

Description

Gets a list of all files at a specified
directory on an FTP server.

Get all Objects accessible in the
current context that have the
associated ID.

Returns the path to the installation
location of DashBoard.

Finds and returns an asynchronous
thread with a specified ID.

Get an attribute registered in the
context with the given ID.

Finds and returns a browser object
with a specified ID. If browser with
specified ID was not found, returns
null.

Gets the version of DashBoard
running the panel.

Get all Java Swing components
accessible in the current context
that have the associated ID.

Gets and returns the current context
ID if it exists.

Returns the username of the
current DashBoard user.

Finds and returns a file at a given
path.

Used to find the size (in bytes) of a
file at a specified path.

Finds and returns an image with a
specified ID.

Returns the first include with the
given ID.

DashBoard CustomPanel Development Guide

ogScript Reference o 191

Function Parameters
getlListenerByld ID

getModificationDate String [File Path]

getObject String [Key]
getPanelPath N/A

getPanelRelativeURL String [Path]

getPosition String [ID]
getPrivateString String [Lookup ID]

String [Key]

getScopedAttribute String [Scope Name]
String [Attribute ID]

getSize String [ID]
getString String [Key]
getTimerManager N/A

Returns Description

getListenerByld returns Starts or stops a listener. Can also
an object representing the check whether a listener is started.
listener.

This object has three
public methods you can
call: start(), stop(), and
isStarted().

The return depends on
which of the three
methods is used:

If the start() method is
used, return is true if the
listener started
successfully; otherwise
false.

If the stop() method is
used, return is true if the
listener stopped
successfully; otherwise
false.

If the isStarted() method
is used, return is true if
the listener is started;
otherwise false.

Returns the time the Retrieves the time the specified file
specified file was last was last modified.

modified, in Unix Epoch

time (also known as

POSIX time), as a LONG

value.

String Retrieves stored object

A String representation of = Gets the path of the panel the

the path to the calling function was called by

panel.

A String representing the Gets the full URL of a path with

full path of the relative respect to the panel it is called from.
path with respect to the Could be used to get the full path of
panel's path an "images" or "stats" directory.
JAVA point object with Retrieves the horizontal (x) and
point.x and point.y vertical (y) position of the object, in
available. pixels.

String Get a string defined in the lookup

table with the specified lookup ID.

Object Get an attribute in the named scope
that has the given ID. Scopes are
often internally defined by

DashBoard.
Dimension object with Retrieves the width and height of
d.width and d.height the specified panel object.
available
String Get a string defined in the global
lookup table.
ContextTimerManager Get the timer manager for the

context to access timers and
perform operations on selected
timers.

This function includes several
methods.

192 e ogScript Reference

DashBoard CustomPanel Development Guide

Function
hide

hsIToColorString

installTimer

isClosed

isTimerRunning

jsonToString

parseXML

pasteText

putObiject

putPrivateString

putString

reload

Parameters

String [ID]

Float32_Array [HSL Float

Array]

String [URL]

String [Method]

String [Request Content
Type]

Object [Data Object]
Boolean [Include
Response]

String [Timer ID]
Boolean [Repeat]
Long [Delay]

Long [Repeat Rate]
Function [Task]

N/A

String [Timer ID]

NativeObject [JSON
native object]

String [Document]

N/A

String [Key]
String [Value]

String [LookuplID]
String [Key]
String [Value]

String [key]
String [value]

String [ID]

Returns
N/A

A hex string
representation of the HSL
color; if HSL float array
was invalid, returns null

Either string data or a
JSON object

N/A

True if the context is
closed or does not exist;
otherwise false

Boolean

A String representation of
the JSON native object

org.w3c.dom.Document

A String containing the
contents of the system
clipboard

N/A

N/A

N/A

Null, if null is provided as
the ID.

Description

Hide the popup with the specified
ID.

Converts an float array containing
HSL data (hue, saturation,
lightness) to a color string (Color
string displays the color in
hexadecimal).

Used to fetch content from a web
server or call restful API.

Create a timer with the given ID and
register it in the
ContextTimerManager. Start the
timer after the specified delay,
repeat the timer if requested at the
specified rate. When the timer fires,
run the specified ogScript function.

Will return true if the context is
closed or does not exist, and false
otherwise.

‘closed’ means that the tab is
closed, DashBoard is closed, or the
panel is reloaded.

Report whether or not a timer exists
and is in the “running” state.

true — a timer with the given ID
exits and is in the “running” state.
false — a timer with the give ID
does not exist or is not in the
“running” state.

Transforms a JSON object into a
String.

Parse and return an XML document
using the org.w3c.dom.Document
API.

Gets the contents of the operating
system clipboard, if the contents
can be represented as a string.

Defines a stored object.

Add or replace a string in a private
lookup table.

Add or replace a string in the global
lookup table.

Rebuild the Ul element with the
given ID.

If no ID is provided, rebuilds entire
document.

DashBoard CustomPanel Development Guide

ogScript Reference e 193

Function

rename

reposition

repositionByPercent

reveal

runXPath

saveToFile

sendUDPAsBytes

sendUDPBytes

sendUDPString

setAnchorPoints

setSize

setStyle

setXML

toBottom

Parameters

String [ID]
String [Name]

String [ID]

Integer [x position]
Integer [y position]
String [ID]

Integer [percent x]
Integer [percent y]
Boolean [center X]
Boolean [center y]

String [ID]

String [XPath]

String [XML Document]

or

String [XML Element]

String [path]

String, byte [], or XML

[data]
Boolean [overwrite]

String [Host]
Integer [Port]
Byte[] [Data]

String [Host]
Integer [Port]
Byte [Data]

String [Host]
Integer [Port]
String [Data]

String [ID]
Boolean [top]
Boolean [left]
Boolean [bottom]
Boolean [right]

String [ID]
String [width]
String [height]

String [ID]
String [Style]

String [ID]

String [new XML Content]

String [ID]

Returns
N/A

N/A

N/A

N/A

NodeList

Returns true, if data is

written successfully;

otherwise false.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Description

Modify the text for a tab name,
button, or label with the specified
ID.

Moves object to specified XY pixel
location

Moves object to the specified
location, as percentage of the
container width or height.

Center x and center y, when true,
center the object at the location
horizontally (x only), vertically (y
only), or both (x and y).

Open a popup with the specified ID,
or bring the tab with the specified ID
to the foreground.

Execute the given XPath command
on the given Document or Element
and return the results as a
NodelList.

Saves data to a file. This function is
typically used to save a byte array,
string, or XML document to a file.

Send the given Data bytes to the
provided Host/Port through UDP.

Send the given Data bytes to the
specified host/port through UDP.

Convert the given Data string to
UTF-8 bytes and send them to the
provided Host/Port through UDP.

Specifies how an object moves if
the user interface is resized for
different monitor and window sizes.
Anchors or releases an object
to/from the top, left, bottom, or right
sides of its container.

Resizes a panel object to the
specified size.
Valid only in <abs/> containers.

Set Style parameters for the
component with the given ID if it
exists.

Dynamically generates Ul
components through ogscript.
Replaces the contents of an
element with a string of XML code.

Displays the object below all others
in the same container. Objects are
layered. If they overlap, higher
layers are drawn over lower layers.

194 o ogScript Reference

DashBoard CustomPanel Development Guide

Function Parameters Returns Description

toTop String [ID] N/A Displays the object above all others
in the same container. Objects are
layered. If they overlap, higher
layers are drawn over lower layers.

upload File [Upload File] N/A Open the File Upload dialog with
the specified file.

addOnClose

Runs a function when the panel is closed.

'closed' means that the tab is closed, DashBoard is closed, or the panel is reloaded.

Syntax

ogscript.addOnClose (Function) ;

Parameters
Parameter Type Required Description
Function Function Yes Function to be added on close.
reference
Returns
N/A
Example

ogscript.addOnClose(functionName);

addRemoteTrigger

Allows remote execution of a script inside of a CustomPanel through the RossTalk GPI command. The
function can be removed by calling close on the object returned.

Syntax

ogscript.addRemoteTrigger (function) ;
ogscript.addRemoteTrigger (triggerID, function);
ogscript.addRemoteTrigger (triggerID, triggerName, function);

Parameters
Parameter Type Required Description
Function String Yes The function to execute, including its
parameters (if any).
Trigger ID String Yes String that triggers the specified function to
execute.
Trigger Name String Yes Shows on the button in the web Ul.
Returns

Returns an object that contains one function named close. When executed, close removes the

DashBoard CustomPanel Development Guide ogScript Reference e 195

function.

Example
// Add a remote trigger with a function named testFunction

ogscript.addRemoteTrigger('testFunction()");

appendXML

Adds a section of OGLML code to the panel identified by the Container ID parameter. The OGLML is
added during runtime and does not affect the .grid file.

The appendXML function is supported within the <abs> tag only.

Syntax

ogscript.appendXML (container ID, XML snippet) ;

Parameters
Parameter Type Required Description
container ID String Yes ID of the container to append to. Valid only
in <abs/> containers.
XML snippet String (XML Yes XML code to append
object)
Returns
N/A
Example

Coming Soon.

asyncExec

Executes a function outside of the UI current thread.
This is especially useful for operations that take time to complete. You can use asyncExec to run such
operations while continuing to execute the rest of your tasks.

Syntax

ogscript.asyncExec (function) ;

ogscript.asyncExec (function, delay);

Parameters

Parameter Type Required Description

function Function Yes Reference to the function to be executed.

reference Can also be an anonymous function.

delay Long No Delay (in milliseconds) before executing
the function.
Note: If the asyncExec thread is busy
executing another task at the specified
time, the function will execute as soon as
the asyncExec thread is free.

Returns

196 e ogScript Reference DashBoard CustomPanel Development Guide

N/A

Example 1

This example displays two buttons. Each button runs a function named incrementFunction, which
increments a parameter named Number until it reaches 500000. The Number parameter is displayed in
the top left corner of the panel.

The button labeled Start Count executes the function normally. No other tasks can start while the count
proceeds. The display of the Number parameter isn’t refreshed until the count is complete.

The button labeled Start Count Using asyncExec executes the function asynchronously. The panel can
start other tasks, and the user interface continues to function normally, while the count proceeds. The
display of the Number parameter is updated as its value changes.

The interface for this example appears as follows:

= asyncExec-Example1.grid x

Start Count

Start Count Using asyncExec

The source code for this example is as follows:

<abs contexttype="opengear">
<meta>
<params>

<param access="1" constraint="0.0;500001.0;0.0;500001.0;1"
constrainttype="INT STEP RANGE" name="Number" oid="Number"
precision="0" type="INT32" value="0" widget="label"/>

</params>
<api>function reallyLongFunction ()
{
<!-- < represents less than and > represents greater than -->
for (var i = 0; 1 < 500001; i++)
{
params.setValue ('Number', 0, 1);
}
}</api>
</meta>

<param expand="true" height="62" left="17" oid="Number" top="20"
width="205"/>

<button buttontype="push" height="66" left="20" name="Start Count"
top="100" width="250">

<task tasktype="ogscript">reallyLongFunction () ;</task>
</button>

<button buttontype="push" height="66" left="20" name="Start Count Using
asyncExec" top="180" width="250">

<task tasktype="ogscript">ogscript.asyncExec (reallyLongFunction) ;</task>

DashBoard CustomPanel Development Guide ogScript Reference o 197

</button>
</abs>

Example 2

The ogscript.asyncExec function does not allow you to pass parameters directly to the function you
want to call. This example demonstrates how to work around this limitation, to asynchronously execute
functions that require parameters, using a “wrapped function” technique.

In this example, which calculates the area of a triangle, the user can toggle between executing the
calculation function synchronously or asynchronously. Each time the calculation function is executed,
the openGear debug console receives a message indicating whether the execution call was synchronous
or asynchronous.

The interface for this example, including the openGear debug console, appears as follows:

=: asyncExec.grid X w. openGear Debug Informati.. X ~— =

|nitialized: 0
Failed: 0
Average Init Time: -1.0 (ms)

Mode Asynchronous

Average Response Delay: -1.0 (ms)
l"I Average Packet Time: -1.0 (ms)
Length P g
0 50 100 Total Packets: 0
[i [Draw OGLML Outlines
Triangle Height (perpendicular to base) e e Bl [] OGP/OGLML Strict Mode

0 50 100 Parameter Inspector

Computed Area of Triangle (in square units) G b Spt et s
Print All M

14:19:15:693: making synchronous call
14:19:15:77% making synchronous call

14:20:48:162: making asynchronous call

Reset

The source code for this panel uses a variable named async to control whether the function named
callMyFunction is executed synchronously or asynchronously.

The source code for this example is as follows:

<abs contexttype="opengear" style="">
<meta>

<ogscript handles="onchange" id="ogs-onchange-base" name="Base Change
Handler" oid="a">calcArea () ;</ogscript>

<ogscript handles="onchange" id="ogs-onchange-height" name="Height Change
Handler" oid="b">calcArea();</ogscript>

<api id="api-asyncExec-demo" name="asyncExec Demo">function calcArea () {

var async = params.getValue('mode', 0) === 1;

function callMyFunction (base, height) {

//Note: This example uses two parameters, but you can use as few or as many
as required.

return function () {

params.setValue ('area', 0, (base * height/2));

198 e ogScript Reference DashBoard CustomPanel Development Guide

if (async) {
ogscript.debug ('making asynchronous call');

ogscript.asyncExec (callMyFunction (params.getValue('a',0),
params.getValue('b',0)));

} else {
ogscript.debug ('making synchronous call');
callMyFunction (params.getValue('a',0), params.getValue('b',0)) ();

//Note: The parentheses at the end of the previous line are required to
call the wrapped function.

}</api>
<params>

<param access="1" constraint="0.0;100.0;0.0;100.0;1.0"
constrainttype="FLOAT STEP RANGE" name="A" oid="a" precision="0"
type="FLOAT32" value="10.0" widget="default"/>

<param access="1" constraint="0.0;100.0;0.0;100.0;1.0"
constrainttype="FLOAT STEP RANGE" name="B" oid="b" precision="0"
type="FLOAT32" value="10.0" widget="default"/>

<param access="1" constrainttype="FLOAT NULL" name="Area" oid="area"
precision="3" type="FLOAT32" value="50.0" widget="default"/>

<param access="1" constrainttype="INT CHOICE" name="Mode" oid="mode"
precision="0" type="INT16" value="0" widget="default">

<constraint key="0">Synchronous</constraint>
<constraint key="1">Asynchronous</constraint>
</param>
</params>
</meta>
<simplegrid cols="2" height="219" left="5" top="20" width="525">
<label header="true" name="Mode" style="txt-align:west"/>
<param expand="true" oid="mode" showlabel="false" widget="toggle"/>
<label header="true" name="Base Length" style="txt-align:west"/>
<param expand="true" oid="a"/>

<label header="true" name="Triangle Height (perpendicular to base)"
style="txt-align:west;"/>

<param expand="true" oid="b"/>

<label header="true" name="Computed Area of Triangle (in square units)"
style="txt-align:west"/>

<param editable="false" expand="true" oid="area" widget="text-display"/>
</simplegrid>
</abs>

asyncFTP

Sends a file to an FTP server. If a callback is provided, asyncFTP calls it when the operation is
complete.

Note: As the file is transferred, a progress attribute is updated. You can add an ogscipt handler to monitor
changes to the attribute to show progress.

Syntax

ogscript.asyncFTP (host, port, username, password, destPath, destName,
binary, sourceFilePath, callback);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference e 199

Parameter Type Required Description

host String Yes The host name of the destination
computer.

port Integer Yes The port number to which the data is to be
sent.

username String Yes The username required to log onto the

destination computer.

password String Yes The password required to log onto the
destination computer.

destPath String No The directory path where the data is to be
saved on the destination computer.
destName String No The name of the destination file.
Can be used to rename the existing file.
If a file with the same name exists in the
destination path, that file is overwritten.
binary Boolean Yes Specifies the transfer mode. When true,
binary transfer is used.
When false, ASCII transfer is used.

sourceFilePath String Yes The directory path to the source file. The
path can be absolute or relative.

callback function No The callback is called when the operation

reference is complete, whether or not the operation is

successful.

Returns

N/A

Example 1

The following example is a task. It uses variable to populate the parameters of the asyncFTP function. It
also includes a callback to indicate success or failure of the transfer.
<task tasktype="ogscript">function callback (success, sourceFilePath,
exception)
{
if (success)
{
ogscript.rename ('label.bytes', 'SUCCESS!'");
}
else
{
ogscript.rename ('label.bytes', "FAIL!');

}

ogscript.rename ('label.bytes', 'TRYING TO SEND FILE'); var host =
params.getStrValue ('params.host', 0);

var port = params.getValue ('params.port', 0);
var user = params.getStrValue ('params.username', 0);

var password = params.getStrValue ('params.password', 0); var file =
params.getStrValue ('params.file', 0);

var destPath = params.getStrValue ('params.destpath', 0); wvar
destFileNameOverride = null;

var isBinary = true;

ogscript.asyncFTP (host, port, user, password, destPath,
destFileNameOverride, isBinary, file, callback);

ogscript.rename ('label.bytes', 'Waiting...");

200 ¢ ogScript Reference DashBoard CustomPanel Development Guide

</task>

Example 2
The following is an example of an ogscript handler for monitoring and reporting the progress of the
transfer.
<ogscript attribute="com.rossvideo.ftp.event" handles="attributechange">
var progressEvent = event.getNewValue() ;
if (progressEvent == null)
{
ogscript.debug('No progress');
}

else

{

ogscript.rename ('label.bytes', (progressEvent.getTotalBytesTransferred()
/ 1024) + 'kb');

}
</ogscript>

asyncFTPGet

Retrieves a file from FTP server.

Syntax

ogscript.asyncFTPGet (host, port, username, password, srcPath, srcName,
binary, destFilePath or null, callback);

Parameters
Parameter Type Required Description
host String Yes The host name of the source computer,
from which the file is to be retrieved
port Integer Yes The port number required to access the
source computer.
username String Yes The username required to log onto the
source computer.
password String Yes The password required to log onto the
source computer.
srcPath String No The directory path where the source file is
located.
srcName String Yes The name of the file to be retrieved.
binary Boolean Yes Specifies the transfer mode. When true,
binary transfer is used.
When false, ASCII transfer is used.
destFilePath or null ~ String No The directory path where the file is to be
saved on the local computer.
If null, the file is saved in the same
directory as the panel.
callback function No The callback is called when the operation
reference is complete, whether or not the operation
is successful.
Returns
N/A
Example

DashBoard CustomPanel Development Guide ogScript Reference o 201

Coming soon.

asyncFTPListFiles

Asynchronously gets a list of all files at a specified directory on an FTP server. Returns an array of
FTPFile objects, on which the following methods can be called:

- file.getName()

- file.getTimestamp() (is a java.util.Calendar object)
- file.getSize()

- file.isFile()

- file.isDirectory()

Syntax

ogscript.asyncFTPListFiles (host, port, username, password, path, callback);

ogscript.asyncFTPListFiles (host, port, username, password, path, fileName,

callback) ;
Parameters
Parameter Type Required Description
Host String Yes Host address
Port Int Yes Host port
Username String Yes Login username
Password String Yes Login password
Path String Yes Source path
fileName String Optional Source file name, can contain the ".*"
wildcard.
callback Function Yes Callback function. Invoked after
reference FTPListFiles is complete.
Callback is passed success, list of files, and
exception
Returns

Returns an array of FTPFile objects.

FTPFile class is used to represent information about files stored on an FTP server.

Example 1
Outputs the file and directory names located at the directory '/Media/Sports/Sens' on an FTP server.

The source code for this example is as follows:

function outputResults (success, files, exception)
{
if (!success)
{
ogscript.debug ("NO SUCCESS");
return;
}
else if (files != null)

{

202 « ogScript Reference DashBoard CustomPanel Development Guide

/*
* files[i].getName ()

* files[i].getTimestamp // returns java.util.Calendar

* files[i].getSize () // returns file size in bytes
* files[i].isFile() // returns true if the file is a File (not a
directory)
* files[i].isDirectory() // returns true if the file is a Directory
*/
ogscript.debug ("GOT " + files.length + " FILES");
for (var i = 0; i < files.length; i++)
{
var jsTime = (new Date(files[i].getTimestamp () .getTimeInMillis()));

if (files[i].isDirectory())

{

ogscript.debug ("GOT DIRECTORY: " + files[i].getName());
}
else
{
ogscript.debug ("GOT FILE: " + files[i].getName() + " " + jsTime);

}

ogscript.asyncFTPListFiles ('CAPRICABVS', 21, 'username', 'password',
' /Media/Sports/Sens', outputResults);

asyncHTTP

Send an asynchronous request to the given URL. Call the given function when the request has
completed. The data retrieved from the HTTP request is passed as a string as the first variable in the
method.

If the MIME type of the HTTP response is image or binary, the result will be a byte array containing
what is fetched.

Syntax

ogscript.asyncHTTP (URL, Method, Content Type, Data, Callback);

ogscript.asyncHTTP (URL, Method, Content Type, Data, Callback,
Include Response Code) ;

Parameters
Parameter Type Required Description
URL String Yes Http url
Method String Yes The method for the URL request, one of:
GET POST HEAD OPTIONS PUT DELETE
TRACE are legal, subject to protocol
restrictions.
Content_Type String Yes The content type of the request.
Data Object Yes Data can be a string, byte array, XML, or
JSON object
Callback Function Yes Function to call after the request
reference completes.

DashBoard CustomPanel Development Guide ogScript Reference e 203

Parameter Type Required Description

Include_Response_ Boolean No True to include response code; otherwise
Code false.

Returns

N/A

Example

Coming soon.

asyncPost

Send an asynchronous post to the given URL. Call the given function when the post has completed. The
data retrieved from the HTTP Post is passed as a string as the first variable in the method.

If the MIME type of the HTTP response is image or binary, the result will be a byte array containing what
is fetched.

Syntax

ogscript.asyncPost (URL, HTTP Post Data, Callback Function);
ogscript.asyncPost (URL, HTTP Post Data, Callback Function, Include

Response) ;
Parameters
Parameter Type Required Description
URL String Yes URL to send a post.
HTTP Post Data String Yes Post to send to the specified URL.
Callback Function Function Yes Function to call after the post completes.
Include Response Boolean No If true, result is a JSON Object
{
responseCode = HTTP RESONSE
CODE,
contentType = HTTP MIME TYPE
url = URL Requested
bytes= BYTES RECEIVED
}
Otherwise, it is content fetched over HTTP
parsed as though it's a string (as before).
Returns
N/A
Example

Coming soon.

cancelTimer

Cancel, stop and clean up, a timer with the given ID.

204 ogScript Reference DashBoard CustomPanel Development Guide

Note: For information about creating a timer function, see installTimer on page 231.

Syntax

ogscript.cancelTimer (Timer ID);

Parameters

Parameter Type Required Description
Timer ID String Yes ID of the timer to stop and clean up.

Returns
N/A

Example

//Stop the timer that was created with installTimer
ogscript.cancelTimer ('myTimer') ;

closePanel

Closes the DashBoard panel that the command was called from.

Syntax

ogscript.closePanel () ;

Parameters
N/A

Returns
N/A

Example

// Close the panel that command is called from

ogscript.closePanel () ;

colorToHSL
Converts an RGB color to an HSL color
Color parameter must be either an integer representation of an RGB color, or a string representation of

an RBG color.

Syntax

ogscript.colorToHSL (int color);

ogscript.colorToHSL (string color);

Parameters
Parameter Type Required Description
color Int Yes Integer representation of RGB color (in

decimal)

DashBoard CustomPanel Development Guide ogScript Reference e 205

Parameter Type Required Description
color String Yes String representation of RGB color (in hex)

Returns

Returns a float array containing the HSL version of the color parameter.

Example
ogscript.colorToHSL(16777215);
ogscript.colorTOHSL('*#FFFFFF");

Will both return HSL for the color white

copyByteArray

Creates a full or partial copy of a byte array.

Syntax
ogscript.copyByteArray(src, offset, length)

Parameters

Parameter Type Required Description

src byte array Yes The byte array to be copied.

offset Integer Yes Index of the first byte to be copied. Use 0
for the start of the array.

length Integer Yes The number of bytes to copy.
Tip: To copy the entire array, use
src.length.

Returns

byte array

Example 1

In the following example, the contents of a byte array named srcArray are copied into a variable named
myCopy.
var myCopy=ogscript.copyByteArray(srcArray,0,srcArray.length);

Example 2

In the following example, the 20 bytes of a byte array named srcArray, starting at byte 4, are copied into
a variable named myCopy.

var myCopy=ogscript.copyByteArray (srcArray,4,20);

copyText

Copies text to the operating system's clipboard.

Syntax
ogscript.copyText (text) ;

206 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Parameters

Parameter Type Required Description

Text String Yes Text to be copied to clipboard.
Returns

N/A

Example

/I Will set the system clipboard to the text "Hello World!"
ogscript.copyText("Hello World!");

createAMPSender

Creates a library of commands for controlling video servers using the Advanced Media Protocol (AMP).

Syntax

ogscript.createAMPSender () ;

Parameters
N/A

Returns
Returns an AMPCommands object.

Example
// To create and store a new AMP sender, you can use

var ampSender = ogscript.createAMPSender();

createAsyncExec

Creates a new asynchronous thread with the specified ID.

Syntax

ogscript.createAsyncExec (thread ID);

Parameters

Parameter Type Required Description

Thread ID String Yes Desired ID for new thread
Returns

Returns an asynchronous thread with the specified ID if it was created, null otherwise.

DashBoard CustomPanel Development Guide ogScript Reference e 207

Example
// Create and save an asynchronous thread with the id "new_thread"

var asyncThread = ogscript.createAsyncExec("new_thread");

createByteArray

Creates an empty byte array of a specified size.

Syntax
ogscript.createByteArray (length);
Parameters

Parameter Type Required Description
length Integer Yes The size of the new array, in bytes.

Returns

An empty byte array.

Example
var myNewByteArray = ogscript.createByteArray(1l2);

createFilelnput

Accesses a file as a byte array with the same capabilities as MessageParser, to read raw bytes. See also
createMessageParser on page 210.

Syntax

ogscript.createFileInput (File path);

Parameters
Parameter Type Required Description
File path String Yes Path of the file to open (can be relative to
the panel)

Returns

FileInputParser (like MessageParser but with getSize(), close(), and
isClosed() .

Example

//' If we have a file object called fileObject, and we want to debug output it's size:
var fileInputParser = ogscript.createFileInput(fileObject);
var fileSize = fileInputParser.getSize();

ogscript.debug(fileSize);

createFileOutput

Creates a new file or appends to an existing file. Instead of saving XML or string data, gives access to
write raw bytes (or strings, or shorts, or ints, etc.). Also gives the ability to append to a file. Once open, it
does not close the file until the panel is closed or close () is called. This is handy for logging.

208 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Similar to MessageBuilder (see createMessageBuilder on page 209).

Syntax
ogscript.createFileOutput (File path, appendToExistingfile);

Parameters

Parameter Type Required Description

File path String Yes File path of the file to be created or
appended.

appendToExistingfile Boolean Yes When true, data is appended to existing
file.
When false, a new file is created.

Returns

FileOutputBuilder, which is same as MessageBuilder with added functions for clear () (overwrite
file), close (), getSize (), flush (), and isClosed ().

Example

Coming soon.

createListener

Create a new listener with its own ID, settings, and task.

Syntax

ogscript.createlistener(id, listenerSettings, listenerTask);

Parameters
Parameter Type Required Description
ID String Yes ID for new listener
Listener Settings Object Yes Settings for new listener
Listener Task Function Yes Task for new listener
reference
Returns

Returns an IServerWithClose object, which contains functions close, setPort, start, and stop.

Example

ogscript.createListener('listenerl’, listener1Settings, listener1Task);

createMessageBuilder

Creates a message builder, which enables you to construct a message. The message is created as a byte
array, can contain multiple data types.

Syntax

ogscript.createMessageBuilder () ;

DashBoard CustomPanel Development Guide ogScript Reference e 209

Parameters
N/A

Returns

Returns a MessageBuilder object used to build byte arrays (generally for creating network messages).

Example

In the following example, a variable named myMessage is created to contain message content created
by a message builder. Then data of various data types are added to the message. The variable
messageArray is defined to contain the message content as a byte array.

Tip: You can use the createMessageParser function to parse messages.

var myMessage

.writeBoolean (true)
.writeByte (255);

.writeShort (65535);
.writeChar('a'):;
.writeLong (42949672
.writeDouble (0.0000

.writeUTF ('Hello Wo

var messageArray = myMessage

myMessage
myMessage

myMessage
myMessage
myMessage
myMessage

myMessage

createMessageParser

Creates a message parser, which enab

Syntax

ogscript.createMessageParser

Parameters
Parameter Type
messageBytes byte array
Returns

ogscript.createMessageBuilder () ;

myMessage.writeByte (255) ;

’

myMessage.writeShort (65535) ;

myMessage.writeInt (65536) ;

96) ;
02) ;

rld'); //includes 2-byte length count
.toByteArray () ;

myMessage.writeFloat (0.000001) ;
myMessage.writeString('abecd') ;

les you to parse a message.

(messageBytes) ;

Required Description

Yes The source byte array.

Returns a MessageParser object (generally used to parse the various pieces of messages received over

the network).

Example

In the following example, a variable named messageArray contains several pieces of data of various
data types to be extracted by a message parser. A variable named parsedMessage is created to contain
the extracted message content. Each element of the array is parsed and sent to the debug utility.

Tip: You can use the createMessageBuilder function to create messages.

var parsedMessage
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.
ogscript.

(
(
(
(
(
debug (
(
(
(
(
(

ogscript.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.
debug (parsedMessage.

createMessageParser (messageArray) ;
readBoolean());

readByte());

readUnsignedByte()) ;

readShort ());
readUnsignedShort ()) ;
readChar ()) ;

readInt ())
readLong ()
readFloat (
readDouble (
readString(
readUTF ()) ;

)
)

)
))
4));

’

)

210 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

createVDCPSender

Creates a library of commands for using the video disk control protocol (VDCP).

Syntax

ogscript.createVDCPSender () ;

Parameters
N/A

Returns
Returns a VDCPCommands object.

Example
// Create a new VDCP Sender
var vdcpLibrary = ogscript.createVDCPSender();

debug
Write a string to the openGear Debug Information view.
The openGear Debug Information view must be open to view debug messages. To open the openGear

Debug Information view, select openGear Debug Information from the Views menu in DashBoard.

Syntax
ogscript.debug (Message) ;

Parameters
Parameter Type Required Description
Message String Yes Message to display in the openGear
Debug Information View.
Returns
N/A
Example 1

ogscript.debug('This is a message');

Example 2

var data = params.getValue (0x12,0);

ogscript.debug ('Parameter 0x12 (score): ' + data);

Example 3

ogscript.debug ('Parameter 0x12 (score): ' + params.getValue(0x12,0));

fireGPI

Sends a Trigger GPI message to panels. When buttons, labels, and displayed parameters that have a
matching GPI Trigger receive the message, their task lists are executed.

Tip: This function can be used for inter-panel communication, by triggering globally.

DashBoard CustomPanel Development Guide ogScript Reference o 211

Syntax
ogscript.fireGPI (Trigger, State, Global);

Parameters

Parameter Type Required Description

Trigger String Yes GPI Trigger message.

State String No Sends optional data string, which can be read
by the script.

Global Boolean Yes When true, applies to all open panels.
When false, applies only the panel initiating the
trigger.

Returns

N/A

Example

In this example, the GPI trigger message 'StartClock' and the state data 'ResetClock' are sent to all open
panels.

ogscript.fireGPI ('StartClock', 'ResetClock', true);

focus

Sets the focus to a component with a specified ID.

Syntax

ogscript.focus (id);

Parameters

Parameter Type Required Description
ID String Yes Component ID to focus

Returns
N/A

Example

Coming soon.

ftp

Saves an object to a destination path on an FTP server. Useful to store statistics, images, and any other
data on a server.

Syntax

212 « ogScript Reference DashBoard CustomPanel Development Guide

ogscript.ftp(host, port, username, password, destPath, destName, binary,

data) ;

Parameters

Parameter Type Required Description

Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Destination Path String Yes Data destination path

Destination Name String Yes Data destination name

Binary Boolean Yes True if data is binary (.jpg, .mp3), false if
data is ascii (.txt, .html).

Data Object Yes Data to be transferred

Returns

Returns an FTPResponse object which contains a boolean 'success', an object 'data’, and an exception

€X'

Example

ogscript.ftp('localhost’, 567, 'username’', 'password', '/dashboard/', 'stats.txt', false, statTextObject);

ftpGet

Gets a file from the source path on an FTP server, and stores it in the destination object. Useful to grab
statistics, images, or any other data from a server.

Syntax

ogscript.ftpGet (host, port, username, password, srcPath, srcName, binary,
destination) ;

Parameters

Parameter Type Required Description

Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Source Path String Yes Source path

Source Name String Yes Source name

Binary Boolean Yes True if data is binary (.jpg, .mp3), false if
data is ascii (.txt, .html).

Destination File Object Yes Destination file object

DashBoard CustomPanel Development Guide ogScript Reference o 213

Returns

Returns an FTPResponse object which contains a boolean 'success', an object 'data’, and an exception

€X'

Example
/I Get a file stats.txt (ascii) from a directory "dashboard" on an ftp server

ogscript.ftpGet('localhost', 567, 'username’, 'password', '/dashboard/, 'stats.txt', false, destinationObject);

ftpListFiles

Gets a list of all files at a specified directory on an FTP server.
Returns an array of FTPFile objects, on which the following methods can be called:
- file.getName()
- file.getTimestamp() (is a java.util.Calendar object)
- file.getSize()
- file.isFile()
- file.isDirectory()

Syntax

ogscript.ftplListFiles (host, port, username, password, srcPath);

ogscript.ftplistFiles (host, port, username, password, srcPath, fileName);

Parameters
Parameter Type Required Description
Host String Yes Host address
Port Int Yes Host port
Username String Yes Login username
Password String Yes Login password
Source Path String Yes Source path
File Name String No Source file name
Returns

Returns an array of FTPFile objects.

FTPFile class is used to represent information about files stored on an FTP server.

Example
// Gets a list of all files under the /photos/ directory on the FTP server
ogscript.ftpListFiles('localhost', 557. 'username', 'password', '/photos/');

214 « ogScript Reference DashBoard CustomPanel Development Guide

getAllByld

Get all Objects accessible in the current context that have the associated ID.

Syntax
ogscript.getAllById (Object ID);

Parameters
Parameter Type Required Description
Object ID String Yes ID of the objects in the current context to
get.
Returns
Object []
Example

Coming soon.

getApplicationPath

Returns the path to the installation location of DashBoard.

Syntax
ogscript.getApplicationPath() ;

Parameters
N/A

Returns

Returns a String representation of the path to the DashBoard installation location.

Example
// Get and store dashboard installation loca

var dashboardLocation = ogscript.getApplicationPath();

getAsyncExecByld

Finds and returns an asynchronous thread with a specified ID.

Syntax
ogscript.getAsyncExecById(thread id);

Parameters

Parameter Type Required Description
Thread ID String Yes ID of desired thread.
Returns

Returns an asynchronous thread with the specified ID if one was found; otherwise null.

DashBoard CustomPanel Development Guide ogScript Reference e 215

Example
//' If we have an asynchronous thread with the id "thread1", we can get it using

ogscript.getAsyncExecByld('threadl');

getAttribute

Get an attribute registered in the context with the given ID.

Syntax

ogscript.getAttribute (Attribute ID);

Parameters
Parameter Type Required Description
Attribute ID String Yes ID from which to get a registered in context
attribute.
Returns
Object
Example

Coming soon.

getBrowserByld

Finds and returns a browser object with a specified ID. If browser with specified ID was not found,
returns null.

Syntax

ogscript.getBrowserById (BrowserID) ;

Parameters
Parameter Type Required Description

Browser ID String Yes ID of browser to look for.
Returns

If found, returns a browser element with the specified ID, null otherwise.

Example
// Get the browser with the ID "TestBrowser"

ogscript.getBrowserByld("TestBrowser");

getBuild

Returns the DashBoard version number. This is the same version number you see in DashBoard if you
click About DashBoard on the Help menu.

216 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Syntax
ogscript.getBuild() ;

Parameters
N/A

Returns

DashBoard version number, similar to the following:
Version 7.0.0I 2015-06-12 T09:54

getComponentsByld

Get all Java Swing components accessible in the current context that have the associated ID.

Syntax
ogscript.getComponentsById (Object ID);

Parameters
Parameter Type Required Description
Object ID String Yes ID from which to get all Java Swing
components accessible in the current
context.
Returns

Component []

Example

Coming soon.

getContextld

Gets and returns the current context ID if it exists.

Syntax
ogscript.getContextId() ;

Parameters
N/A

Returns

Returns a string representation of the context ID if it exists; otherwise null.

Example
/! Get the current context ID

var contextID = ogscript.getContextld();

DashBoard CustomPanel Development Guide ogScript Reference o 217

getCurrentUser

Returns the username of the current DashBoard user.

When a User Rights Management server is present, this function returns the username of the user
signed-in to DashBoard.

When no User Rights Management Server is found, this function returns the computer account name.

Syntax

ogscript.getCurrentUser ();

Parameters
N/A

Returns

String

Example

This example uses the getCurrentUser function to read the user name, and then uses the rename function
to rename a label. For more information about the rename function, see rename on page 237.

The label is defined in the .grid file as follows:

<label height="49" id="Welcome Label" left="136" name="Welcome" style="txt-
align:west;" top="275" width="188"/>

The script to read the user name and then rename the label is as follows:

//read the login user name

var loginName = ogscript.getCurrentUser () ;

//display the user name in the Welcome label var message = 'Welcome ' +
loginName; ogscript.rename ('Welcome Label',message);

getFile

Finds and returns a file at a given path.

Syntax
ogscript.getFile(filePath);

Parameters

Parameter Type Required Description
filePath String Yes Path to desired file
Returns

Returns the File object found at the specified path if it was found, null otherwise.

Example
// Get a file from the path "C://Users/John/Desktop/test.txt"
var file = ogscript.getFile('C://Users/John/Desktop/test.txt");

218 e ogScript Reference DashBoard CustomPanel Development Guide

getFileSize

Used to find the size (in bytes) of a file at a specified path.

Syntax
ogscript.getFileSize (filePath);

Parameters

Parameter Type Required Description
filePath String Yes Path to desired file
Returns

Returns a long equal to the size of the file in bytes.

Example
/I Save the size of the file located at "C://Users/John/Desktop/helloworld.txt"
var fileSize = ogscript.getFileSize('C://Users/John/Desktop/helloworld.txt');

getimageByid

Finds and returns an image with a specified ID.

Syntax
ogscript.getImageById (imagelD) ;

Parameters

Parameter Type Required Description
Image ID String Yes ID of desired image
Returns

Returns an image if one matching the ID was found, null otherwise.

Example
// Find and return an image with the id "imagel"

ogscript.getlmageBylId(‘imagel');

getincludeByld

Returns the first include with the given ID. The include must have been created using the <include> tag.

Syntax
ogscript.getIncludeById(Include ID);

Parameters
Parameter Type Required Description
Include ID String Yes ID of the include to find.

DashBoard CustomPanel Development Guide ogScript Reference o 219

Returns

IncludeReloadableContainer

Example

Coming soon.

getListenerByld

Starts or stops a listener. Can also check whether a listener is started.

Syntax
ogscript.getListenerById(ID);

Parameters
Parameter Type Required Description
ID String Yes ID of the listener.
Returns

getListenerByld returns an object representing the listener.
This object has three public methods you can call: start(), stop(), and isStarted().
The return depends on which of the three methods is used:

o If the start() method is used, return is true if the listener started successfully; otherwise false.
o If'the stop() method is used, return is true if the listener stopped successfully; otherwise false.

o If the isStarted() method is used, return is true if the listener is started; otherwise false.

Example

var myListener = ogscript.getListenerById("myId"); myListener.start();

myListener.stop();

myListener.isStarted() ;

getModificationDate

Retrieves the time the specified file was last modified.

Syntax
ogscript.getModificationDate (file path);

Parameters

Parameter Type Required Description
File path String Yes Path to the file.

Returns

Returns the time the specified file was last modified, in Unix Epoch time (also known as POSIX time),
as a LONG value.

Example

Coming soon.

220 e ogScript Reference DashBoard CustomPanel Development Guide

getObject
You can create an object and reference it in other parts of the code. Some possible uses include:

e Storing parsed XML data in an object so you don’t have to re-parse it.
e Storing the results of an async HTTP post so you don’t have to re-fetch it.

e Storing connection code so you cna reference it wherever your code needs to establish that
connection.

The getObject function works in conjunction with the putObject function. The putObject function
defines the object. The getObject function references the object. The scope of a defined object is global,
so you can reference it from anywhere in your panel code.

For information about the putObject function, see putObject on page 234.

Syntax
ogscript.getObject (Key) ;

Parameters

Parameter Type Required Description

Key String Yes The name used to reference what is being
stored.

Returns

String.

Example

The following example parses and stores data from an XML file in a variable so it can be used globally
without the need to re-parse the XML data each time you want to use it.

It defines a function named loadTheXML, which uses the parse XML function to retrieve XML data
from a file and load it into a variable named myObject. It then uses the putObject function to copy the
data into a variable named myXML. The readTheXML function loads the data into a variable named
otherObject.

function loadTheXML ()

{

var myObject = ogscript.parseXML('file:/c:/mydocument.xml') ;
ogscript.putObject ('myXML',myObject) ;

}

function readTheXML ()

{
var otherObject = ogscript.getObject ('myXML') ;

// Do anything you want with the data, now contained in the otherObject
variable.

}

getPanelPath

Gets the path of the panel the function was called by.

Syntax
ogscript.getPanelPath () ;

DashBoard CustomPanel Development Guide ogScript Reference o 221

Parameters
N/A

Returns

Returns a String representation of the path to the calling panel.

Example

/I If the calling panel is stored at "C:\Users\Test\DashBoard\" on the disk,
ogscript.getPanelPath();

// will return "C:\Users\Test\DashBoard\"

getPanelRelativeURL

Gets the full URL of a path with respect to the panel it is called from. Could be used to get the full path
of an "images" or "stats" directory.

Syntax
ogscript.getPanelRelativeURL (path);

Parameters

Parameter Type Required Description
path String Yes Relative path
Returns

Returns a String representing the full path of the relative path with respect to the panel's path.

Example

// If we have a panel stored at C:\Users\Test\Panels\ and we store images in a // directory \Images\
located in the same \Panels\ folder that the panel itself is located in, we can // use the line

ogscript.getPanelRelativeURL("\Images\');
// to get the String "C:\Users\Test\Panels\Images\".

getPosition

Retrieves the horizontal (x) and vertical (y) position of a panel object, in pixels.

Syntax
ogscript.getPosition (ID);

Parameters
Parameter Type Required Description
ID String Yes The ID of the panel object.
Returns

JAVA point object containing public variables x and y, populated with values for the horizontal (y) and
vertical (y) position of the object, in pixels.

222 « ogScript Reference DashBoard CustomPanel Development Guide

Example

The following example draws a label that can be resized and repositioned. When the user drags the
middle of the label, it moves. When the user drags the bottom right corner of the label, the label is
resized.
<abs bottom="0" contexttype="opengear" left="0" right="0" top="0">

<meta>

<ogscript handles="onmousedown" targetid="move-label">var size =
ogscript.getSize ('move-label');

if (event.getX () < size.width - 10 & & event.y <
size.height - 10)

{
ogscript.putObject ('mode', 'move');

ogscript.putObject ('position', ogscript.getPosition ('move-label'));
ogscript.putObject ('offsetX', event.x);
ogscript.putObject ('offsetY', event.y);

}
else
{
ogscript.putObject ('mode', 'size');
}
</ogscript>
<ogscript handles="ondrag" targetid="move-label">
if (ogscript.getObject('mode') == 'size')
{
ogscript.setSize ('move-label', event.getX (), event.getY());
}
else if (ogscript.getObject ('mode') == 'move')
{
var origin = ogscript.getObject ('position'); var offsetX =
ogscript.getObject ('offsetX');
var offsetY = ogscript.getObject ('offsetY');

ogscript.reposition ('move-label', origin.x + event.x - offsetX,
origin.y + event.y - offsetY);

ogscript.putObject ('position', ogscript.getPosition ('move-label'));
}
</ogscript>
</meta>

<label height="116" id="move-label" left="27" style="bdr:etched;bg#FF0000"
top="38" width="215"/>

</abs>

getPrivateString
Get a string defined in a private lookup table that matches the specified lookup ID.

Note: Use the getPrivateString function if the lookup table has an ID. If the lookup table has no ID, use
the getString function. For more information about the getString function, see getString on page 225.

Syntax

ogscript.getPrivateString (Lookup ID, Key);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference e 223

Parameter Type Required Description

Lookup ID String Yes ID of the string to find in the specified
lookup table.
Key String Yes Private lookup table in which to find the

specified string.

Returns

String

Example

This example uses the getPrivateString function to read an IP address stored in a lookup table. The
lookup table is defined at the beginning of the .grid file, and can be accessed by any script.

The lookup table definition for this example is as follows:
<lookup id="hosts">
<entry key="XPression.host">10.0.2.210</entry>
<entry key="XPression.port">7788</entry>
</lookup>
The script to read an entry from the lookup table is as follows:

//Get the IP Address associated with entry key XPression.host

var host = ogscript.getPrivateString('hosts', 'XPression.host');

getScopedAttribute

Get an attribute in the named scope that has the given ID. Scopes are often internally defined by
DashBoard.

Syntax
ogscript.getScopedAttribute (Scope Name, Attribute ID);

Parameters
Parameter Type Required Description
Scope Name String Yes Name of the scope in which to get and
attribute.
Attribute ID String Yes ID of the attribute to get in the named

scope.

Returns

Object

Example

Coming soon.

getSize

Retrieves the width and height of the specified panel object, in pixels.

Syntax
ogscript.getSize (ID);

Parameters

224 « ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
ID String Yes ID of the panel object.

Returns

Dimension object with d.width and d.height available.

Example

The following example draws a label that can be resized and repositioned. When the user drags the
middle of the label, it moves. When the user drags the bottom right corner of the label, the label is
resized.

<abs bottom="0" contexttype="opengear" left="0" right="0" top="0">
<meta>

<ogscript handles="onmousedown" targetid="move-label">var size =
ogscript.getSize ('move-label');

if (event.getX () < size.width - 10 & & event.y <
size.height - 10)

{

ogscript.putObject ('mode', 'move'); ogscript.putObject('position',
ogscript.getPosition ('move-label')); ogscript.putObject ('offsetX’',
event.x); ogscript.putObject('offsetY', event.y);

}
else
{
ogscript.putObject ('mode', 'size');
}
</ogscript>
<ogscript handles="ondrag" targetid="move-label">
if (ogscript.getObject('mode') == 'size')
{
ogscript.setSize ('move-label', event.getX (), event.get¥Y());
}
else if (ogscript.getObject ('mode') == 'move')
{
var origin = ogscript.getObject ('position'); wvar offsetX =

ogscript.getObject ('offsetX'); var offsetY =
ogscript.getObject ('offsetY');

ogscript.reposition('move-label', origin.x + event.x - offsetX,
origin.y + event.y - offsetY);

ogscript.putObject ('position', ogscript.getPosition ('move-label'));
}
</ogscript>
</meta>

<label height="116" id="move-label" left="27" style="bdr:etched;bg#FF0000"
top="38" width="215"/>

</abs>

getString
Get a string defined in the global lookup table.

Note: Use the getString function if the lookup table has no ID. If the lookup table has an ID, use the
getPrivateString function. For more information about the getPrivateString function, see

getPrivateString on page 223.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference e 225

ogscript.getString (Key) ;

Parameters
Parameter Type Required Description
Key String Yes Private lookup table from which to get
string.
Returns
Object
Example

This example uses the getString function to read an IP address stored in a lookup table. The lookup table
definition for this example is as follows:

<lookup>
<entry key="Tom">television</entry>
</lookup>

The script to read an entry from the lookup table is as follows:

//Get the string associated with entry key Tom
ogscript.getString('Tom') ;

getTimerManager

Get the timer manager for the context to access timers and perform operations on selected timers.

Syntax

ogscript.getTimerManager ();

Parameters
N/A

Methods

The getTimerManager function is an object that has several methods. The following methods can be run
on an existing timer. A timer can be created using the installTimer function or using the graphical
editor. For more information about the installTimer function, see installTimer on page 231.

Parameter
Method Required Description
isRunning() N/A Checks whether the time is running.
startTimer(Boolean reset) Yes Starts the timer.
true or false If the boolean parameter is set to true, the
timer resets to the starting time when the
function is performed.
If the boolean parameter is set to false, the
function is performed at the timer's current
time.
stopTimer(Boolean reset) Yes Stops the timer.
true or false If the boolean parameter is set to true, the
timer resets to the starting time when the
function is performed.
If the boolean parameter is set to false, the
function is performed at the timer's current
time.
resetTimer() N/A Resets the timer to the start time.

226 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Method
setStart(Long valuelnMilliseconds)

setStop(Long valuelnMilliseconds)

setTime(Long valuelnMilliseconds)

getStart()
getStop()
getCurrent()

incrementTime(Long difference)

setPattern(String dateTimePattern)

Returns

ContextTimerManager

Parameter
Required
Yes
Milliseconds
(Long)
Yes
Milliseconds
(Long)
Yes
Milliseconds
(Long)

N/A
N/A
N/A

Yes

Milliseconds
(Long)

Yes

Time format
definition

Description
Sets the start time of the timer.

Sets the stop time of the timer.

Sets the current time of the timer.

Returns the timer’s start time in
milliseconds (Long).

Returns the timer’s stop time in
milliseconds (Long).

Returns the timer’s current value in
milliseconds (Long).

Increments the timer value by the specified
number of milliseconds

Sets the time format pattern for displaying
time values.

Example 1 — getTimerManager function using isRunning method

//verify if timer named 'selftimer'

is currently running

if (ogscript.getTimerManager () .getTimer ('selftimer') .isRunning())

{

ogscript.debug ('running = true');

}

else

{

ogscript.debug ('running

}

= false');

Example 2 — getTimerManager function using startTimer method

//Starts a timer named 'selftimer'
ogscript.getTimerManager () .getTimer ('selftimer') .startTimer (false);

Example 3 — getTimerManager function using stopTimer method

//Stops a timer named 'selftimer'
ogscript.getTimerManager () .getTimer ('selftimer') .stopTimer (false) ;

Example 4 — getTimerManager function using resetTimer method

//Resets a timer named 'selftimer' to the start time
ogscript.getTimerManager () .getTimer ('selftimer') .resetTimer () ;

Example 5 — getTimerManager function using setStart method

//Set the start time of a timer named'selftimer' to 30 seconds

(30000ms)

ogscript.getTimerManager () .getTimer ('selftimer') .setStart (30000) ;

DashBoard CustomPanel Development Guide

ogScript Reference e 227

Example 6 — getTimerManager function using setStop method

//Set the stop time of a timer named 'selftimer' to two minutes (120000 ms)

ogscript.getTimerManager () .getTimer ('selftimer') .setStop (120000) ;

Example 7 — getTimerManager function using setTime method

//Set the current time of a timer named 'selftimer' to 59 seconds (59000 ms)

ogscript.getTimerManager () .getTimer ('selftimer') .setTime (59000) ;

Example 8 — getTimerManager function using getStart method

// Get the start time of a timer named ‘'selftimer'

var startTime =
ogscript.getTimerManager () .getTimer ('selftimer') .getStart();

Example 9 — getTimerManager function using getStop method

// Get the stop time of a timer named'selftimer'

var stopTime =
ogscript.getTimerManager () .getTimer ('selftimer') .getStop () ;

Example 10 — getTimerManager function using getCurrent method

// Get the current time of a timer named 'selftimer'

var currentTime =
ogscript.getTimerManager () .getTimer ('selftimer') .getCurrent () ;

Example 11 — getTimerManager function using incrementTime method
//increase the current time of a timer named 'selftimer' by 30 seconds
ogscript.getTimerManager () .getTimer ('selftimer') .incrementTime (30000)

’

//decrease the current time of a timer named 'selftimer' by 5 seconds
ogscript.getTimerManager () .getTimer ('selftimer') .incrementTime (-5000)

’

Example 12 — getTimerManager function using setPattern method

The following table describes the syntax for setting the time format. For some formats, repeating the
letter returns more digits or a variation of the format. For example, when specifying M for month, one
M shows the month number with no leading zero, two Ms adds a leading zero for months 0 to 9, three
Ms shows the three letter month (such as Jan), and four or more Ms shows the full month name (such as

January).
Date or Time
Letter Component Presentation Examples
D Day Number 189
H Hour of the day (0-23) Number 8
m Minute of the hour Number 30
s Second of the minute Number 55
S Millisecond Number 768
G Era designator Text AD
Y Year Number 1969; 69
M Month of the year Text or number September; Sep; 09
w Week of the year Number 27
w Week of the month Number 3
d Day of the month Number 12

228 ogScript Reference DashBoard CustomPanel Development Guide

Date or Time

Letter Component Presentation Examples
F Day of the week in the Number 1
month If the day of the week is

Tuesday, 1 would
denote the first
Tuesday of the month

E Day of the week Text Friday; Fri

k Hour of the day (1-24) Number 22

K Hour in AM/PM (0-11) Number 0

h Hour in AM/PM (1-12 Number 10

a AM/PM marker Text PM

z Time zone General Time Zone Pacific Standard Time,
PST,

4 Time zone RFC 822 time zone -0800

The following code example returns the date and time. An example of the date and time as returned by
this example is Sep 30, 2013 2:35:34 PM.

//Sets the display format of a timer named 'simpleclock' to show full date and
time

ogscript.getTimerManager () .getTimer ('simpleclock') .setPattern('MMM dd, yyyy
h:mm:ss a');

Hide the popup associated with the specified ID.
Note: to use the hide function, a popup must already exist. Popups can be created only in the JavaScript
source, not in DashBoard.

Syntax
ogscript.hide (Popup ID);

Parameters
Parameter Type Required Description
Popup ID String Yes ID of the popup to hide.
Returns
N/A
Example

This example includes two sections of XML code to be added to the .grid file. The first creates a button

that opens a popup. The second creates a button that hides the popup.

//This example creates a button which, when clicked by a user, opens the popup

area.

<popup id="popupl" left="20" name="Click here to open the Popup" top="25">
<abs height="300" left="200" style="bdr:etched;" top="200" width="300">
</abs>

</popup>

//This example creates a button which, when clicked by a user, hides the
popup.
<button buttontype="push" height="50" left="50" name="Click here to hide the

DashBoard CustomPanel Development Guide ogScript Reference e 229

Popup" top="500" width="200">
<task tasktype="ogscript">ogscript.hide ('popupl') ;</task>
</button>

hslToColorString

Converts a float array containing HSL data (hue, saturation, lightness) to a color string (Color string
displays the color in hexadecimal).

Syntax
ogscript.hslToColorString (hslFloat[]);

Parameters
Parameter Type Required Description
HSL Float Array Float32_Array Yes Float array — first element is hue, second
element is saturation, third element is
lightness.
Returns

Returns a hex string representation of the HSL color; if HSL float array was invalid, returns null.

Example

/I If we have an hslFloat array containing 91 in index 0, 0.89 in index 1, and 0.61 in index 2
ogscript.hslToColorString(hslFloatArray);

// Returns the string "#98F442"

http

Used to fetch content from a web server or call restful API.

Syntax
ogscript.http (URL, method, requestContentType, dataObject, includeResponse);

Parameters
Parameter Type Required Description
URL String Yes http URL
Method String Yes The method for the URL request, one of:
GET POST HEAD OPTIONS PUT DELETE
TRACE are legal, subject to protocol
restrictions.
Request Content String Yes The content type of the request.
Type
Data Object Object Yes Data can be a string, byte array, XML, or
JSON object
Include Response Boolean Yes True to include response; otherwise false.
Returns

230 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Returns either string data or a JSON object.

Example

Coming soon.

installTimer

Create a timer with the given ID and register it in the ContextTimerManager. Start the timer after the
specified delay. If requested, repeat the timer at the specified frequency. When the timer fires, run the
specified ogScript function.

Syntax

ogscript.installTimer (Timer ID, Repeat, Delay, Repeat Delay, Task);
ogscript.installTimer (Timer ID, Repeat, Delay, Repeat Delay, Boolean, Task);

Parameters
Parameter Type Required Description
Timer ID String Yes ID of the timer to create and register in the
ContextTimerManager.
Repeat Boolean Yes true — repeat the timer using the specified
Delay and Repeat Delay.
false — only run the timer once, do not
repeat the timer.
Delay Long Yes Number of milliseconds to wait before
starting the timer.
Repeat Delay Long Yes How frequently the associated function
runs, in milliseconds.
Execute in Timer Boolean No If true, task will execute in timer thread
Task Function Yes ogScript function to run when the timer
fires.
Returns
N/A
Example

This example creates a label named "Time" and a button named "Install Timer". When a user clicks the
"Install Timer" button, an associated task runs a function named myFunction (), which creates a timer.

It also retrieves the time value every 30 seconds, and loads it into a variable named str which is
displayed on the "Time" label. The myFunction () function uses the installTimer function to create the
timer and set the rate at which the time data is updated.
<label height="80" id="timeLabel" left="43" name="Time" style="txt-
align:west" top="26" width="275"/>
<button buttontype="push" height="57" left="48" name="Install Timer"
top="133" width="184">
<task tasktype="ogscript">function myFunction ()
{
var date = new Date();

var str = date.getHours() + ':' + date.getMinutes() + ':' +
date.getSeconds () ;

ogscript.rename ('timeLabel', 'Time: ' + str);

}

//create a timer that starts immediately and runs myFunction every 30

DashBoard CustomPanel Development Guide ogScript Reference o 231

seconds (30000 milliseconds)
ogscript.installTimer ('myTimer', true, 0, 30000, myFunction);
</task>

</button>

isClosed

Will return true if the context is closed or does not exist, and false otherwise.

‘closed’” means that the tab is closed, DashBoard is closed, or the panel is reloaded.

Syntax

ogscript.isClosed() ;

Parameters
N/A

Returns

Returns true if the context is closed or does not exist; otherwise false.

Example
// Get if the context is closed.

var closed = ogscript.isClosed();

isTimerRunning

Report whether or not a timer exists and is in the “running” state.

Syntax

ogscript.isTimerRunning (Timer ID);

Parameters

Parameter Type Required Description

Timer ID String Yes true — a timer with the given ID exits and is in
the “running” state.
false — a timer with the give ID does not exist
or is not in the “running” state.

Returns

Boolean

Example

//verify if the timer is currently running

var runtime = ogscript.isTimerRunning('selftimer"');

jsonToString

Transforms a JSON object into a String.

Syntax

232 e ogScript Reference DashBoard CustomPanel Development Guide

ogscript.jsonToString (NativeObject) ;

Parameters

Parameter Type Required Description

JSON native object = NativeObject Yes The JSON to be converted to a String
Returns

Returns a String representation of the JSON native object.

Example
//' If we have a JSON object named jsonObj, we can convert it to a string using:

var jsonString = ogscript.jsonToString(jsonObyj);

parseXML

Parse and return an XML document using the org.w3c.dom.Document API. The XML document to parse
can be provided in the following ways:

e Piece of well-formatted XML

e URL relative to a CustomPanel

e File URL (file:/c:/...)

e http URL (http://...)

The document is loaded via a blocking call that is run in the DashBoard User Interface thread.

Calls to load documents over a network (for example, using http://) are strongly discouraged and can
have undesired impacts on the UI performance.

Syntax

ogscript.parseXML (Document) ;

Parameters
Parameter Type Required Description
Document String Yes XML document to parse.
Returns
XML Document

For more information about returns, refer to the following URL:

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

DashBoard CustomPanel Development Guide ogScript Reference e 233

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

Example

The following example loads an XML file from the web using an asynchronous http request. An XPath
expression extracts data from the XML and displays it on a label.

function myFunc (pageContent)

{

var xmlPageContent = '<?xml version="1.0" encoding="UTF-8"?>\n' +
pageContent;

var document = ogscript.parseXML (xmlPageContent); var nodelist =
ogscript.runXPath ('/response/sports/sportsItem/leagues/leaguesIt

em/teams/teamsItem/name', document); var teamList = '<htmls>"';
ogscript.debug (nodelList.getLength());

for (var i = 0; i < nodelist.getLength(); i++)
{

teamList = teamlList + nodelist.item(i) .getTextContent () +
'
';

}
ogscript.rename ('resultlLabel', teamList + '</htmlsgt;"');

}

ogscript.asyncPost ('http://api.oursports.com/vl/sports/hockey/league/
teams/?_ accept=text$%6Axmlé&apikey=ksjdurieuejrudifkbos85kg’', null,
myFunc) ;

pasteText

Gets the contents of the operating system clipboard, if the contents can be represented as a string.

Syntax

ogscript.pasteText () ;

Parameters
N/A

Returns

Returns a String containing the contents of the system clipboard.

Example
/I If the system clipboard contains the text "Hello World!"
ogscript.pasteText();

// will return a string containing "Hello World!"

putObject

You can create an object and reference it in other parts of the code. Some possible uses include:

e Storing parsed XML data in an object so you don’t have to re-parse it.
e Storing the results of an async HTTP post so you don’t have to re-fetch it.

e Storing connection code so you cna reference it wherever your code needs to establish that
connection.

The putObject function works in conjunction with the getObject function. The putObject function
defines the object. The getObject function references the object. The scope of a defined object is global,
so you can reference it from anywhere in your panel code.

For information about the getObject function, see getObject on page 221.

234 « ogScript Reference DashBoard CustomPanel Development Guide

http://api.oursports.com/v1/sports/hockey/league/

Syntax
ogscript.putObject (Key, Value);

Parameters

Parameter Type Required Description

Key String Yes The name of the object in which the data is
being stored.

Value String Yes The value to be stored.
Returns
N/A.
Example

The following example parses and stores data from an XML file in a variable so it can be used globally
without the need to re-parse the XML data each time you want to use it.

It defines a function named loadTheXML, which uses the parse XML function to retrieve XML data
from a file and load it into a variable named myObject. It then uses the putObject function to copy the
data into a variable named myXML. The readTheXML function loads the data into a variable named
otherObject.

function loadTheXML ()

{
var myObject = ogscript.parseXML('file:/c:/mydocument.xml"') ;
ogscript.putObject ('myXML',myObject) ;

}
function readTheXML ()
{
var otherObject = ogscript.getObject ('myXML'") ;

// Do anything you want with the data, now contained in the otherObject
variable.

putPrivateString

Add or replace a string in a private lookup table.
Note: Use the putPrivateString function if the lookup table has an ID. If the lookup table has no ID, use
the putString function. For more information about the putString function, see putString on page 236.

Syntax

ogscript.putPrivateString (Lookup ID, Key, Value);

Parameters
Parameter Type Required Description
Lookup ID String Yes ID of the string to create or replace in the
specified lookup table.
Key String Yes Private lookup table in which to create or
replace the specified string.
Value String Yes New value for the specified string.
Returns
N/A

DashBoard CustomPanel Development Guide ogScript Reference e 235

Example

This example uses the putPrivateString function to replace a datum in a lookup table. The lookup table
definition for this example is as follows:

<lookup id="hosts">
<entry key="XPression.host">10.0.2.210</entry>
<entry key="XPression.port">9999</entry>
</lookup>
The script to replace an entry in the lookup table is as follows:

//Replace the port number associated with entry key XPression.host
ogscript.putPrivateString('hosts', 'XPression.port', '7788"');

putString
Add or replace a string in the global lookup table.

Note: Use the putPrivateString function if the lookup table has no ID. If the lookup table has an ID, use
the putPrivateString function. For more information about the putPrivateString function, see

putPrivateString on page 235.

Syntax
ogscript.putString (Lookup ID, Value);

Parameters

Parameter Type Required Description

Lookup ID String Yes ID of the string to create or replace in the
global lookup table.

Value String Yes New value for the specified string.
Returns
N/A
Example

This example uses the putString function to replace a datum in a lookup table. The lookup table
definition for this example is as follows:

<lookup>
<entry key="Tom">television</entry>
</lookup>

The script to replace an entry in the lookup table is as follows:

//Replace the string associated with entry key Tom
ogscript.putString ('Tom', 'telephone');

reload

Rebuild the user interface element with the specified ID. If the ID is for an <include> tag, re-fetch the
included document before rebuilding the user interface.

If no ID is provided, rebuilds the entire document.

Syntax

ogscript.reload(User Interface ID);

Parameters

236 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
User Interface ID String Yes ID of the user interface element to rebuild.

Returns
Null, if null is provided as the ID.

Example

In this example, the ogscript.reload function is used to rebuild a drop-down list to show new options.

//create a new array of colours

var color = new Array("Red","Green","Blue");

//populate the dropdown color list with the color array

params.replaceldentifiedConstraint ('color list',
params.createIntChoiceConstraint (color));

//reload the dropdown list to view the new options
ogscript.reload('color list');

rename

Modify the text associated with a tab name, label, or button. Use the Component ID to specify the
component to rename. Do not use the Object ID (OID).

To view the ID of a component, double-click the component in PanelBuilder to open the Edit
Component dialog box. The ID box displays the ID of the selected component.

m Position/Stretch Attributes

General Attributes
(UET RIS Current Actor

ID — use the ID

displayed in this box to

identify the component

to rename.

Figure 99 - Component ID in the Edit Component dialog box

Syntax

ogscript.rename (Component ID, Name);

Parameters
Parameter Type Required Description
Component ID String Yes ID of the user interface component to
rename.
Name String Yes New text to display on the screen for the
specified user interface component.
Returns
N/A
Example 1

// Set the item with ID='Seat 5' to have the text 'Mika Andersen'
ogscript.rename ('Seat 5','Mika Andersen');

DashBoard CustomPanel Development Guide ogScript Reference e 237

Example 2

// Read the value of a parameter into a variable named data

var data = params.getValue (0x12,0);

// Use the variable named data to make a new ID and set the ID to have the text
'Mika Andersen'

ogscript.rename ('Seat ' + data, 'Mika Andersen');

reposition
Moves a component to an absolute position, defined as an X - Y pixel position.

Alternatively, you can specify a component’s position by percentage of the container’s width and
height. For more information, see repositionByPercent on page 238.

Syntax

ogscript.reposition(ID, x position, y position);

Parameters

Parameter Type Required Description

ID String Yes ID of the component you want to reposition

X position Integer Yes Number of pixels from the left

y position Integer Yes Number of pixels from the right
Returns
N/A
Example

In this example, the task associated with the “Top Left” button uses the ogscript.reposition function to
reposition a label.

<label height="40" id="myLabel" left="160" name="myLabel" style="txt-
align:center" top="100" width="160"/>

<button buttontype="push" height="40" left="160" name="Top Left" top="200"
width="160">

<task tasktype="ogscript">ogscript.reposition('myLabel', 0, 0);
</task>
</button>

repositionByPercent

Moves a component to an absolute position, defined as a percentage of container width and height.
Alternatively, you can specify a component’s position by pixel. For more information, see reposition on
page 238.

Syntax

ogscript.repositionByPercent (0OID, x percent, y percent, center x, center vy);

Parameters

Parameter Type Required Description

OID String Yes OID of the component you want to
reposition

X percent Integer Yes Distance from the left, as a percentage of

238 e ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
container width

y percent Integer Yes Distance from the top, as a percentage of
container height

center x Boolean Yes true — Shows the full width of the object.
false — Crops the object if it extends
beyond the horizontal boundaries of the
container.

centery Boolean Yes true — Shows the full height of the object.

false — Crops the object if it extends
beyond the vertical boundaries of the
container.

Returns
N/A

Example

In this example, the task associated with the One Quarter button uses the ogscript.repositionByPercent
function to reposition a label 25% from the left, and 25% from the top. Centering is set to false in both
the x and y axes, so if the label overhangs the edges of the container the overhanging portion is not
shown.

<label height="41" id="myLabel" left="160" name="myLabel" style="txt-
align:center"” top="101" width="160"/>

<button buttontype="push" height="40" left="160" name="One Quarter" top="200"
width="159">

<task tasktype="ogscript">ogscript.repositionByPercent ('myLabel', 25, 25,
false, false);

</task>
</button>

reveal
Open a popup with the specified ID, or bring the tab with the specified ID to the foreground.

This function is especially useful for tab sets that have their placement set to the center, meaning that
there are no tabs showing for users to click. Using the reveal function is the only way to display the
specified tab.

Syntax

ogscript.reveal (User Interface ID);

Parameters
Parameter Type Required Description
User Interface ID String Yes ID of the popup to open or the tab to bring
to the foreground.
Returns
N/A
Example

This example includes a definition for a set of tabs with its position set to center, and uses the
ogscript.reveal function to select a particular tab to be shown.

<tab height="91" left="580" top="373" width="221">
<abs id="pagel" name="Tab 1"/>

DashBoard CustomPanel Development Guide ogScript Reference e 239

<abs id="page2" name="Tab 2"/>
<abs id="page3" name="Tab 3"/>
</tab>

//Select Tab2

ogscript.reveal ('page2');

runXPath

Execute the given XPath command on the given XML Document or XML Element and return the
results as a NodeList.

ogscript.runXPath (XPath, Document);
or

ogscript.runXPath (XPath, Element);

Parameters
Parameter Type Required Description
XPath String Yes The XPath command to execute on the
given XML Document or XML Element
Document String Yes XML Document on which to execute the
given XPath command.
Element Yes XML Element on which to execute the

given XPath command.

For more information about the required parameters, refer to the following URLs:

e http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
e http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Element.html

e http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NodeList.html
http://www.w3schools.com/xml/xpath_intro.asp

Returns
NodeList

Example

Coming soon.

saveToFile

Saves data to a file. This function is typically used to save a byte array, string, or XML document to a
file.

Syntax

ogscript.saveToFile (path, data, overwrite);

Parameters
Parameter Type Required Description

path String Yes The directory path to the destination file.
data String, byte[], or Yes The data to be saved to file.

XML

240 ogScript Reference DashBoard CustomPanel Development Guide

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Element.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NodeList.html
http://www.w3schools.com/xml/xpath_intro.asp
http://www.w3schools.com/xml/xpath_intro.asp

Parameter Type Required Description

overwrite Boolean Yes When true, existing file of the same name
is overwritten.

When false, existing file of the same name
is not overwritten.

Returns

Returns true, if data is written successfully; otherwise false.

Example

ogscript.saveToFile('files/my-new-file.txt','This is my data',true);

sendUDPAsBYytes

Converts ASCII string data to a byte array, and sends it as bytes to the specified host/port through UDP.
The ASCII data is converted to Hexadecimal bytes, and can consist only of the following characters:

e (0to9
e AtoF

e Spaces and commas (as delimiters)

Syntax

ogscript.sendUDPAsBytes (Host, Port, Data);

Parameters

Parameter Type Required Description

Host String Yes Host name to send the given data through
UDP.

Port Integer Yes Port number on the given host to be sent
given data through UDP.

Data ASCII string Yes Data to be converted to bytes and sent
through UDP to the specified host/port.

Returns

N/A

Example

ogscript.sendUDPAsBytes (myComputer, 7788,'7A, 3C, FF');

sendUDPBytes

Send the given data bytes to the specified host/port through UDP.

Syntax
ogscript.sendUDPBytes (Host, Port, Data);

Parameters
Parameter Type Required Description
Host String Yes Host name to send the given Data bytes
through UDP.
Port Integer Yes Port number on the given Host to send

given Data byte through UDP.

DashBoard CustomPanel Development Guide ogScript Reference o 241

Parameter Type Required Description

Data Byte Yes Data bytes to send through UDP to the
given Host and Port.

Returns
N/A

Example

Coming soon.

sendUDPString

Convert a string to UTF-8 bytes and send the bytes to the provided host/port through UDP.

Syntax
ogscript.sendUDPString (Host, Port, Data);

Parameters
Parameter Type Required Description
Host String Yes Host name to send the given Data string
through UDP.
Port Integer Yes Port number on the given Host to send
given Data string through UDP.
Data String Yes Data string to convert to bytes and send
through UDP to the given Host and Port.
Returns
N/A
Example

This example uses the sendUDPString function to send a message to a particular host/port.

var host = ogscript.getPrivateString('hosts',' Panel.host ');

var port = parselnt (ogscript.getPrivateString('hosts',' Panel.port '));

var message = "Hello, can you hear me?";

ogscript.sendUDPString (host,port, message) ;

setAnchorPoints

Specifies how an object moves if the user interface is resized for different monitor and window sizes.
Anchor points are relative to the container in which they are located (for example, a tab, a split pane,
etc.).

The setAnchorPoints function allows you to anchor or release an object to/from the top, left, bottom, or
right sides. By setting these values, you can effectively anchor an object to a corner, a side, or the
center.

Syntax

ogscript.setAnchorPoints (ID, top, left, bottom, right);

Parameters

242 « ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description

ID String Yes ID of the object you want to anchor.

top Boolean Yes true — object is anchored to the top
false — object is not anchored to the top

left Boolean Yes true — object is anchored to the left
false — object is not anchored to the left

bottom Boolean Yes true — object is anchored to the bottom
false — object is not anchored to the
bottom

right Boolean Yes true — object is anchored to the right

false — object is not anchored to the right

Returns
N/A

Example

The button in this example has a task that anchors an object (with ID 'dialog') to the top left.

<button buttontype="push" name="anchorTopLeft">

<task tasktype="ogscript">ogscript.setAnchorPoints ('dialog', true, true,
false, false);

</task>
</button>

setSize

Resizes a panel object the to the specified width and height, in pixels. Valid only in <abs/> containers.

Syntax
ogscript.setSize (ID, width, height);

Parameters
Parameter Type Required Description
ID String Yes ID of the panel object to be resized. Valid
only in <abs/> containers.
width Integer Yes New width of the panel, in pixels.
height Integer Yes New height of the panel, in pixels.
Returns
N/A
Example

Coming soon.

setStyle

Set Style parameters for the component with the given ID if it exists. Style commands are additive.
They can be added or modified, but not removed.

Tip: To view syntax examples for particular styles, use the PanelBuilder user interface to add the style
on the Style tab, and then view the resulting code in the Source tab.

DashBoard CustomPanel Development Guide ogScript Reference e 243

Tip: If you start the ID of the controls inside the widget with a “.”, it will be scoped to the individual
widget.

For openGear Style Hints for the available style options, refer to the openGear documentation.

Syntax
ogscript.setStyle (Component ID, Style);

Parameters
Parameter Type Required Description
Component ID String Yes ID of the Component to style with the
given Style parameters.
Style String Yes Style parameters with which to style the
given Component.
Returns
N/A
Example 1

This example defines the style of a label, and then makes three style changes.

//label definition

<label height="45" id="labell" left="330" name="Change the style of this
label" style="txt-align:west;" top="100" width="325"/>

//first change - set the background to red
ogscript.setStyle('labell', "bg#FF0000") ;

//second change - set the text colour to black and text size to big
ogscript.setStyle('labell',"fg#000000;size:big");

//third change - modify the text alignment from left to right
ogscript.setStyle('labell',"txt-align:east");

Example 2

This example creates a pre-defined style, and applies it to a component. Pre-defined styles can add or
replace a component’s style settings, but not remove them.

//create a pre-defined style

<style id="Stylel" name="Stylel" value="size:Big;bg#6F63FB;bdr:etched;"/>

//Add a predefined Style to a component
ogscript.setStyle('labell',"style:Stylel")

setXML
Dynamically generates Ul components through ogscript. Replaces the contents of an element with a
string of XML code.
Notes:
e The .grid file is not affected by setxML () so its effects do not persist after the CustomPanel is
closed.

e setXML () is not synchronous with the calling code which can lead to subtle problems. For
example, if you used this method to instantiate a customwidget you would not be able to access it
on the line immediately following setXML () call.

e Ifused to inject OGLML that includes <ogscript /> either directly, or as part of a customwidget

244 « ogScript Reference DashBoard CustomPanel Development Guide

it's necessary to release any resources used by the injected objects before subsequently overwriting
the same <abs/>. Failure to do this will cause resource leaks, and possibly unwanted behaviour.

Syntax

ogscript.setXML (ID, new XML content)

Parameters
Parameter Type Required Description
ID String Yes ID of the component in which you want to
replace XML
new XML content String Yes The new XML content
Returns
N/A
Example 1

This simplified example illustrates how to use ogscript.setxML.

In this example, the value of the variable og1m1 is XML content (a label named myLabel). The
setxML command populates the abs canvas named Destination with the value of the oglml
variable. The result simply displays the label name myLabel.
<abs>

<abs id="my-abs" name="Destination" />

var oglml '<label name="myLabel"/>',

ogscript setXML ('my-abs', oglml);
</abs>

Example 2

This example displays a table with two rows of two columns. The first row contains a parameter named
TYPE LABEL TEXT: that allows the user to type in a white box. The second row contains a button
named setXML and a blank label. When the user clicks the setXML button, the associated task
populates the blank label with whatever text the user typed. The user can redefine the label contents as
many times as they want.

TYPE LABEL TEXT: Type Herel

setXml

In this example, the replacement XML is specified in a variable named oglml that uses
params.getValue to retrieve the typed text from the parameter named Text for Label. The button
task uses ogscript.setXML to populate the label (id="my-abs") with the value of the variable
oglml.

<abs contexttype="opengear">
<meta>

DashBoard CustomPanel Development Guide ogScript Reference o 245

<params>

<param access="1" maxlength="0" name="Text for Label" oid="txt"
type="STRING" value="Type Here!" widget="text"/>

</params>

</meta>

<table height="100" left="5" top="9" width="400">
<tr>

<label colspan="1" fill="both" header="true" name="TYPE LABEL TEXT:"
rowspan="1" style="txt-align:center;" weightx="1.0" weighty="1.0"/>

<param colspan="1" expand="true" fill="both" oid="txt" rowspan="1"
style="txt-align:center;" weightx="1.0" weighty="1.0"/>

</tr>
<tr>

<button buttontype="push" colspan="1" fill="both" name="setXml"
rowspan="1" weightx="1.0" weighty="1.0">

<task tasktype="ogscript">var oglml = '<label name=""' +
params.getValue ('txt',0) + '" style="txt-align:center;" anchor="center"
top="0" bottom="0" left="0" right="0" />'

ogscript.setXML ('my-abs', oglml);</task>
</button>

<abs anchor="center" colspan="1" fill="both" id="my-abs" rowspan="2"
style="bdr:etched;" weightx="1.0" weighty="1.0"/>

</tr>
</table>
</abs>

Example 3

This example has a label with text (<abs id="0x4"> .. </abs>). It also has a button associated with
a task that uses ogscript.setXML to replace the text by replacing the XML contents of the <abs>
element. In this example, the replacement XML is contained within the task definition.

Before the button is clicked:

This Text Will Be Replaced

replaceText

After the button is clicked:

; the Mew Text

replacelext

<abs>
<abs id="0x4">

<label height="59" id="0x2" left="61" name="This Text Will Be Replaced"
style="txt-align:center" top="40" width="238"/>

246 ¢ ogScript Reference DashBoard CustomPanel Development Guide

</abs>

<button buttontype="push" height="40" id="0x3" left="59"
name="replaceText" top="121" width="240">

<task tasktype="ogscript">ogscript.setXML('0x4"', '<label
height="59" id="0x2" left="61" name="This is the New Text" style="txt-
align:center" top="40" width="238"/>"');

</task>
</button>
</abs>

toBottom

Displays the object below all others in the same container. Object display is layered. If objects overlap,
higher layers are drawn over lower layers.

Syntax

ogscript.toBottom (ID) ;

Parameters

Parameter Type Required Description
ID String Yes ID object to be sent to the bottom

Returns
N/A

Example

This example includes two labels occupying the same position. LabelOne is defined second in the code,
so it appears on top and is therefore visible. Button One runs a task that uses ogscript.toBottom to send
Label One to the bottom of the stack. This makes Label Two visible. Button Two sends Label Two to
the bottom.

<abs>

<label height="317" id="labelTwo" 1left="100" name="Label Two"
style="size:Biggest;bg#D92648;txt-align:center;" top="100" width="350"/>

<label height="317" id="labelOne" left="100" name="Label One"
style="size:Biggest;bgf#selectbg;txt-align:center;" top="100" width="350"/>

<button buttontype="push" height="40" id="oneBottom" left="150" name="Button
One" style="bg#selectbg;txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toBottom('labelOne"') ;
</task>
</button>

<button buttontype="push" height="40" id="twoBottomn" left="300" name="Button
Two" style="bg#D92648; txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toBottom('labelTwo"') ;
</task>

</button>

</abs>

toTop

Displays the object above all others in the same container. Object display is layered. If objects overlap,
higher layers are drawn over lower layers.

DashBoard CustomPanel Development Guide ogScript Reference e 247

Syntax
ogscript.toTop (ID);

Parameters

Parameter Type Required Description
ID String Yes ID object to be sent to the top

Returns
N/A

Example

This example includes two labels occupying the same position. LabelTwo is defined second in the code,
so it appears on top and is therefore visible. Button One runs a task that uses ogscript.toTop to send
Label One to the top of the stack. This makes Label One visible. Button Two sends Label Two to the

top.
<abs>
<label height="317" id="labelOne" left="100" name="Label One"
style="size:Biggest;bgf#selectbg;txt-align:center;" top="100" width="350"/>
<label height="317" id="labelTwo" 1left="100" name="Label Two"
style="size:Biggest;bg#D92648;txt-align:center;" top="100" width="350"/>
<button buttontype="push" height="40" id="oneTop" left="150" name="Button
One" style="bg#selectbg;txt-align:center;" top="450" width="100">
<task tasktype="ogscript">ogscript.toTop('labelOne"') ;
</task>
</button>
<button buttontype="push" height="40" id="twoTop" left="300" name="Button
Two" style="bg#D92648;txt-align:center;" top="450" width="100">
<task tasktype="ogscript">ogscript.toTop ('labelTwo"') ;
</task>
</button>
</abs>
upload

Open the File Upload dialog with the specified file.

Syntax

ogscript.upload (Filename) ;

Parameters
Parameter Type Required Description
Filename String Yes Name of the file with which to open the
File Upload dialog box.
Returns
N/A
Example

Coming soon.

248 e« ogScript Reference DashBoard CustomPanel Development Guide

params Object

In ogScript, use the params object to access functions to interact with openGear Device parameters and
constraints. The params object is also used to manipulate parameters stored in the .grid file.

The params object is accessible when a CustomPanel is associated with an openGear device or XML
data file (.grid file). Scripts referencing a device must follow beneath the referenced device in the XML
hierarchy.

To call an openGear Device function, use:
params . function name (parameters) ;

For example:

var data = params.getValue (0x12, 0);

Some params functions return a ParamScriptable object named this, which contains several methods
that enable you to manipulate parameters. For more information, see ParamScriptable Object on page
268.

params Functions

The following table lists the functions of the params object. Detailed descriptions appear after the table.
If you are reading this document on-screen, click a function name in the table to view its description.

Function Parameters Returns Description
createCopy Source OID ParamScriptable Creates a copy of the parameter. The
Destination OID duplicate parameter is independent of

the base parameter. Changing the
value of one does not affect the other.

createlntChoiceConstraint [choices] N/A Creates an integer choice constraint
(which is a set of key/value pairs) for
use in toggle buttons, combo box, radio
buttons, etc. The choice constraint you
create here can be used to replace a
constraint for a parameter.

createLinkedCopy Source OID ParamScriptable Creates a copy of the parameter that is
Destination OID linked to the base parameter:

Changing the value of the base
parameter also changes the value of
the duplicate parameter.
Changing the value of the duplicate
parameter does not affect the value of
the base parameter.

createMultiSet String [OID] multiset object Replaces multiple parameter values all
Integer [Index] at once.
Object [Value]

createParam JSON N/A Creates a parameter based on a JSON
parameter parameter definition.
definition

createStringChoiceConstraint [choices] N/A Creates a string choice constraint

(which is a set of key/value pairs) for
use in toggle buttons, combo box, radio
buttons, etc. The choice constraint you
create here can be used to replace a
constraint for a parameter.

deleteParam OID of N/A Deletes the specified parameter.
parameter to
delete
getAllValues String [OID] The entire array of Retrieves the entire array of values
values within the within the parameter.

DashBoard CustomPanel Development Guide ogScript Reference e 249

Function

getConstraint

getDeviceStatus

getElementCount

getldentifiedConstraint

getParam

getParam (QID,

Index).remove

getStream

getValue

getValueAsString

isDeviceOnline

isDeviceReadOnly

isPrivateParamContext

replaceConstraint

replaceViewConstraint

Parameters

String [OID]

N/A

Integer [Context
ID] String [OID]

Integer [Index]
String [ID]

String [Context
ID]

String [OID]
Integer [Index]

String or
Integer [OID]
Integer [Index]

String [OID]

String [OID]
Integer [Index]

String [OID]
Integer [Index]

N/A

N/A

N/A

String [OID]
String
[Constraint I1D]

String [view
OID] String
[constraint

Returns
parameter.

Constraint

Device status
information

ParamScriptable

String

ParamScriptable

N/A

Boolean

String

String

Online status of the
device as Boolean

Boolean

Boolean

N/A

N/A

Description

Get the constraint from the parameter
with the specified OID.

Checks the status of a device and
returns an Integer value indicating that
status:

0 - good

1 - warning
2 - error

3 - unknown

Get the information about an element in
a parameter with the specified OID.

Get the constraint with the specified ID.
If the ID is an external object URL, get
the constraint defined in the specified
external object.

Gets information about an element in
the parameter with the specified Object
ID.

Removes a parameter element. If the
parameter is an array with more than

one element, the element at the index
location is removed.

Check whether streaming of parameter
values to XPression is enabled.

Get the value of a parameter with the
specified OID.

If the parameter is not an array
parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Get a string representation of an
element in a parameter with the
specified OID.

Queries a device to determine whether
it is online.

Returns true if the RBAC user’s
permission set only allows for Read
permissions.

Returns false if the RBAC user’s
permission set allows for Read and
Write perissions.

If not connected to an RPM server, it
will automatically return false.

Returns true if local OGLML-based
parameters are operating disconnected
from the real device.

Replace the constraint for the
parameter with the specified OID with
the constraint with the specified
constraint ID.

Replaces the constraint object of a
parameter view.

250 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

Function

resetAllValues

setAccess

setAllValues

setMenuState

setPrivateParamContext

setStream

setValue

setValueRelative

toOid

createCopy

Parameters
object]
String

[parameter
OID]

String [OID],
Integer
[Access]

OID Object]]
Values

Integer [Static
Menu ID],
Integer [Menu
State]

Boolean [Value]

String [OID]
Boolean
[true/false]

String [OID],
Integer [Index],
Object [Value]

String [OID],
Integer [index],
Integer [change
in value]

String

String

String (OID)

Returns

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Description

If the specified parameter is a copy of a
base parameter, this function resets the
parameter’s values to those of the base
parameter.

Set the access level of the parameter
with the provided OID.

For an array parameter, replaces the
current array with the new array.

Set the menu state of the menu with the
specified static menu ID.

true — disconnect parameters defined
in the OGLML document from the
device.

false — re-connect parameters defined
in the OGLML document from the
device.

Controls whether the parameter
streams its values to XPression when
XPression streaming is on.

When true, streaming is ON. When
false, streaming is OFF.

Set the value of an element in a
parameter with the provided OID to the
provided value.

Changes the value of a parameter.

If the value is a string, it is replaced. If it
is a float or int, the specified value is
added to the current value.

Subscribes to a device with
subscriptions support.

Unsubscribes to a device with
subscriptions support.

Creates an OID object.

Creates a copy of the parameter. The duplicate parameter is independent of the base parameter.
Changing the value of one does not affect the other.

Syntax

params.createCopy (Source OID, Destination OID) ;

Parameters
Parameter Type Required Description

Source OID String Yes The OID of the parameter to copy
Destination OID String Yes The OID of the new parameter.
Returns

Returns ParamScriptable. For more information, see ParamScriptable Object on page 268.

DashBoard CustomPanel Development Guide

ogScript Reference o 251

Example

Coming soon.

createlntChoiceConstraint

Syntax
params.createIntChoiceConstraint (Choices) ;
Parameters

Parameter Type Required Description
Choices String Yes Name of the array variable that contains the
choices.
Returns
N/A

Example

Coming soon.

createLinkedCopy

Creates a copy of the parameter that is linked to the base parameter:
e Changing the value of the base parameter also changes the value of the duplicate parameter.

e Changing the value of the duplicate parameter does not affect the value of the base parameter.

Syntax

params.createlLinkedCopy (Source OID, Destination OID);

Parameters
Parameter Type Required Description
Source OID String Yes The OID of the parameter to copy
Destination OID String Yes The OID of the new parameter.
Returns

Returns ParamScriptable. For more information, see ParamScriptable Object on page 268.

Example

Coming soon.

createMultiSet

Changes the values of multiple parameters at once. This function will return a multiSetScriptable
Object.

Syntax
params.createMultiSet (OID, Index, Value);

Parameters

252 e ogScript Reference DashBoard CustomPanel Development Guide

Parameter
OID

Index

Value

Returns

Type Required Description
String Yes Object ID of object of interest.
Integer Yes Array parameter index. If the parameter is

not an array parameter, use an Index of 0.
In most cases, enter 0 as the Index.

Object Yes New value for the OID.

multiSetScriptable Object

Example

In the following example, four parameters named "Value 1" through "Value 4" are created with text
values that are displayed on buttons when the example is run. When the user taps the Multi-Set button,
the params.createMultiSet function changes the parameter values to those referenced by the function.

<abs contexttype="opengear" gridsize="20" style="">

<meta>
<params>
<param access="1" maxlength="0" name="Value 1"
stateless="true" type="STRING" value="Original
widget="100"/>
<param access="1" maxlength="0" name="Value 2"
stateless="true" type="STRING" value="Original
widget="100"/>
<param access="1" maxlength="0" name="Value 3"
stateless="true" type="STRING" value="Original
widget="100"/>
<param access="1" maxlength="0" name="Value 4"
stateless="true" type="STRING" value="Original
widget="100"/>
</params>
</meta>

oid="Value 1"
Value 1"

oid="Value 2"
Value 2"

oid="Value 3"
Value 3"

oid="Value 4"
Value 4"

<param expand="true" height="40" left="20" oid="Value 1" top="20"
width="340"/>

<param expand="true"

width="340"/>

<param expand="true" height="40" left="20" oid="Value 3" top="140"
width="340"/>

<param expand="true" height="40" left="20" oid="Value 4" top="200"
width="340"/>

<button buttontype="push" height="60" left="20" name="Multi-Set" top="260"
width="340">

<task tasktype="ogscript">

</abs>

height="40" left="20" oid="Value 2" top="80"

var multi = params.createMultiSet(); multi.setValue('Value 1', O,

'Multi-set 1');
multi.setValue ('Value 2', 0, 'Multi-set 2');
multi.setValue ('Value 3', 0, 'Multi-set 3');

multi.setValue ('Value 4', 0, 'Multi-set 4'); multi.execute();
</task>
</button>

DashBoard CustomPanel Development Guide

ogScript Reference e 253

createParam

Creates a parameter based on a JSON parameter definition.

Syntax

params.createParam (JSON parameter definition);

Parameters

Parameter Type Required Description

JSON parameter String Yes JSON definition of the parameter.
definition

Returns
N/A

Example

Coming soon.

createStringChoiceConstraint

Syntax

params.createStringChoiceConstraint (Choices) ;

Parameters
Parameter Type Required Description
Choices String Yes Name of the array variable that contains the
choices.
Returns
N/A

Example

Coming soon.

254 ogScript Reference DashBoard CustomPanel Development Guide

deleteParam

Deletes the specified parameter.

Syntax
params.deleteParam (0OID) ;
Parameters

Parameter Type Required Description
OID String Yes OID of parameter to delete

Returns
N/A

Example

Coming soon.

getAllValues

Retrieves the entire array of values from a parameter.

Syntax
params.getAllValues (OID) ;

Parameters

Parameter Type Required Description

OID String Yes The OID of the parameter
Returns

The entire array of values from the parameter.

Example

Coming soon.

getConstraint

Get the constraint from the parameter with the specified Object ID.

Syntax
params.getConstraint (OID);
Parameters

Parameter Type Required Description
OID String Yes Object ID of the object of interest.

Returns
Constraint

Example

Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference

e 255

getDeviceStatus

Checks the status of a device and returns an Integer value indicating that status.

Syntax

params.getDeviceStatus (0OID) ;

Parameters
Parameter Type Required Description

OoID String Yes OID of the device to be queried.
Returns

Device status, as an Integer:

e (0—good
e 1 —warning
e 2 —error

e 3 —unknown

Example

Coming soon.

getElementCount

Gets the number of elements in a parameter array.

Syntax

params.getElementCount (OID) ;

Parameters

Parameter Type Required Description

OID String Yes The OID of the parameter.
Returns

The number of elements in the parameter array, as an Integer.

Example

Coming soon.

getldentifiedConstraint

Get the constraint with the specified ID. If the ID is an external object URL, get the constraint defined
in the specified external object.

Syntax

params.getIdentifiedConstraint (ID);

Parameters
Parameter Type Required Description
ID String Yes ID of the constraint of interest.

256 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Returns

String

Example

Coming soon.

getParam

Gets information about an element in the parameter with the specified Object ID.

Syntax

params.getParam(Context ID, OID, Index);

Parameters
Parameter Type Required Description

Context ID String No The context ID of the component that contains
the parameter of interest.

OID String Yes Object ID of the object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Returns
ParamScriptable
Example

Coming soon.

getParam(OID, Index).remove

Removes a parameter element. If the parameter is an array with more than one element, the element at
the index location is removed.

Syntax

params.getParam([oid], [index]) .remove () ;

Parameters
Parameter Type Required Description
OID String or Yes OID can be a string or an integer, depending
Integer on how the parameter is defined.
Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0.
Returns
N/A
Example

Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference e 257

getStream

Checks whether streaming of parameter values to XPression is enabled for the parameter.

Syntax

params.getStream(0OID) ;

Parameters
Parameter Type Required Description

OoID String Yes OID of the parameter
Returns

Boolean, to indicate whether streaming is enabled.

Example

Coming soon.

getValue

Gets the value of a parameter with the specified Object ID.

Syntax
params.getValue (OID, Index);

Parameters
Parameter Type Required Description

OID String Yes Object ID of object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Returns
String
Example

var data = params.getValue (0x12,0);

getValueAsString

Gets a string representation of an element in a parameter with the specified Object ID.

Syntax

params.getValueAsString (OID, Index);

258 e ogScript Reference DashBoard CustomPanel Development Guide

Parameters

Parameter
OID

Type Required

String Yes

Index Integer Yes

Returns

String

Example

Coming soon.

isDeviceOnline

Queries a device to determine whether it is online.

Syntax

params.isDeviceOnline (OID) ;

Parameters

Parameter Type Required
OID String Yes
Returns

Online status of the device.

Example

Coming soon.

isDeviceReadOnly

Description
Object ID of the object of interest.

Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Description
OID of device to query.

Returns true if the RBAC user’s permission set only allows for Read permissions.

Returns false if the RBAC user’s permission set allows for Read and Write perissions.

If not connected to an RPM server, it will automatically return false.

Syntax

params.isDeviceReadOnly () ;
Parameters
N/A

Returns

Boolean.

Example

Coming soon.

DashBoard CustomPanel Development Guide

ogScript Reference e 259

isPrivateParamContext

Returns true when the local OGLML-based parameters are operating disconnected from a real device.
Changes and values are not sent to or fetched from the device if the parameter is defined in the OGLML
document.

Syntax

params.isPrivateParamContext () ;

Parameters
N/A

Returns

Boolean.

Example

Coming soon.

replaceConstraint

Replace the constraint for the parameter with the specified Object ID with the constraint with the
specified constraint ID. If the ID is an external object URL, replace the constraint with the constraint
specified by the external object.

Syntax

params.replaceConstraint (0OID, Constraint ID);

Parameters

Parameter Type Required Description

OID String Yes Object ID of object of interest.

Constraint ID String Yes ID of the constraint with which to replace the
constraint for the parameter with the specified
Object ID.

Returns

N/A

Example

Coming soon.

replaceViewConstraint

Replaces the constraint object of a parameter view.

Syntax

params.replaceViewConstraint (view OID, constraint object);

Parameters
Parameter Type Required Description
view OID String Yes OID of the view.
constraint object String Yes constraint object to use.

260 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Returns
N/A

Example

Coming soon.

resetAllValues

If the specified parameter is a copy of a base parameter, this function resets the parameter’s values to
those of the base parameter.

Syntax
params.resetAllValues (parameter OID);
Parameters

Parameter Type Required Description
parameter OID String Yes The OID of the parameter.

Returns
N/A

Example

Coming soon.

setAccess
Set the access level of the parameter with the specified Object ID.

Syntax

params.setAccess (0ID, Access);

Parameters

Parameter Type Required Description

OID String Yes Object ID of object of interest.

Access Integer Yes Access level to set for the specified OID. The
available access levels are as follows:
0 — Read Only
1 — Read and Write

Returns

N/A

Example

Coming soon.

setAllValues

For an array parameter, replaces the current array with a new array.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference o 261

params.setAllValues ([oid], [array]):;

Parameters

Parameter Type Required Description
OID String Yes The OID of the parameter.

Array String Yes The new array.
Returns
N/A

Example

Coming soon.

setMenuState

Set the menu state of the menu with the provided static menu ID.

Syntax

params.setMenuState (Static Menu ID, Menu State);

Parameters
Parameter Type Required Description
Static Menu ID Integer Yes ID of the menu of interest.
Menu State Integer Yes Menu state to set for the specified Static Menu

ID. The available menu states are as follows:
0 — Hidden
1 — Disabled
2 — Normal

Returns

N/A

Example

Coming soon.

setPrivateParamContext

Control the context between the parameters defined in the OGLM document and a device. This function
has no impact on parameters that are only defined on the device or only defined in the OGLML
document.

Syntax

params.setPrivateParamContext (Value) ;

Parameters

Parameter Type Required Description

262 ¢ ogScript Reference DashBoard CustomPanel Development Guide

Value Boolean Yes The available contexts are as follows:

true — disconnect parameters defined in the
OGLML document from the device.

false — re-connect parameters defined in the
OGLML document from the device.

Returns
N/A

Example

Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference e 263

setStream

Controls whether a parameter streams its values to XPression when XPression streaming is on.

Syntax

params.getStream (0ID, true/false);

Parameters

Parameter Type
OoID String

true/false Boolean

Returns
N/A

Example

Coming soon.

setValue

Required

Yes

Yes

Description
OID of the parameter

When true, streaming is ON. When false,
streaming is OFF.

Set the value of a parameter for the provided Object ID.

Syntax

params.setValue (0OID, Index,

Parameters

Parameter Type
OID String
Index Integer
Value Object
Returns

N/A

Example 1

// Set the parameter to 3:
params.setValue (0x12,0,3);

Example2

Value) ;

Required

Yes

Yes

Yes

Description

Object ID of object of interest.

Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

New value for the OID.

// Set the value to 3 greater than it was.

var data = params.getValue (0x12,0);

Example3

params.setValue (0x12,0,data + 3);

// Set the value of Param A to match the value of Param B

params.setValue ('Param A',

0, params.getValue('Param B', 0));

264 ogScript Reference

DashBoard CustomPanel Development Guide

setValueRelative

Increments or decrements a numeric value by a specified amount.

Syntax

params.setValueRelative (OID, Index, Change in value);

Parameters

Parameter Type Required Description

OID String or Yes The OID of the object of which you want to

Integer change the value.
Index Integer Yes Position of data in the parameter.

Change in Integer Yes Amount by which the value is incremented. To

Value decrement the value, use a negative integer.
Returns
N/A
Example

Coming soon.

subscribe

You can use the subscribe or unsubscribe command templates or code syntax below to add the
subscription list to a DashBoard device panel. You must add support to subscribe and/or unsubscribe
from parameter updates in the device panel’s OGLML structure. You can also use the command

template that is provided in the DashBoard PanelBuilder Script Palette under params.
Script Editor

2]

Param List
User Objects ogscript tallyservice

Basic Scripting User Functions

VG TP | Subseribe

Unsubseribe

params.unsubscribe(subscriptionO

Syntax

var subList = new Array();
subList.push ("oidl");
subList.push ("oid2") ;

var subscriptionOwnerObject = params.subscribe (subList, callback);

Parameters Type Required Description

DashBoard CustomPanel Development Guide ogScript Reference o 265

subList, [Array of *Required to Subscribes to parameters with the provided

callback strings, support devices OIDs. To support subscriptions, the subscribe
callback] with support for function is required to subscribe to parameter
subscriptions. updates in the device panel's OGLML

structure. You can also use the DashBoard
PanelBuilder Script Palette to add the

subscribe or unsubscribe functions using the
template.

Returns
Returns subscriptionOwnerObject for later use to unsubscribe.

"params.subscribe" Example
<task tasktype="ogscript">
var subList= new Array();
subList.push ("deviceoptions.speakerlevel");
subList.push ("db.touch.version.*");
var subscriptionOwnerObject = params.subscribe (subList, callback);

ogscript.putObject ('my-subscription-owner-object',
subscriptionOwnerObject) ;

</task>

Explanation

In this example, the ogscript.putObject is used to retain the result of the params.subscribe
function, which is later used to unsubscribe.

unsubscribe

You can use the subscribe or unsubscribe command templates or code syntax below to add the
subscription list to a DashBoard device panel. You must add support to subscribe and/or unsubscribe
from parameter updates in the device panel’s OGLML structure. You can also use the template that is
provided in the DashBoard PanelBuilder Script Palette.

ogScript Editor

ogScript & Script P

Param List
User Objects ogscript tallyservice [

Basic Scripting User Functions

aint)

Unsubscribe

Close

params.unsubscribe(subscriptionC

Syntax

266 ¢ ogScript Reference DashBoard CustomPanel Development Guide

params.unsubscribe (subscriptionOwnerObject) ;

Function Type Returns Description
unsubscribe [subscriptionOw N/A Unsubscribes from the OIDs provided by the
nerObject] subscriptionOwnerObiject.

"params.subscribe"” Example
<task tasktype="ogscript">

var subscriptionOwnerObject = ogscript.getObject ('my-subscription-
owner-object');

params.unsubscribe (subscriptionOwnerObject) ;
</task>

Explanation

In the subscribe example above, the ogscript.putObject is used to retain the result of the
params.subscribe function and ogscript.getObject fetches it when we want to unsubscribe
(params.unsubscribe). You can see that the subscribe response object is used to unsubscribe.

Now that you have successfully implemented subscriptions support, make sure that you leverage the
built-in automations within DashBoard to support subscriptions.

toOid

Creates an OID object.

Syntax
params.to0id (OID) ;

Parameters

Parameter Type Required Description
OID String Yes The value of the new OID object.

Returns
N/A

Example
This example is a function that uses the toOid function to create an OID with the value

'my . special.oid’, then uses the get0id function to return the OID value.

function lookForSpecificOid (myParam)
{
var myOID = params.toOid('my.special.oid'); return myParam.getOid() == myOID;

}

DashBoard CustomPanel Development Guide ogScript Reference e 267

ParamScriptable Object
Some params functions return a ParamScriptable object named this, which contains several methods
that enable you to manipulate parameters.

In ogScript, use methods of the this object to manipulate parameters. To call a general-purpose
function, use:

this.methodname (parameters) ;

For example:

this.replaceConstraint ("0.0;100.0;0.0;100.0;1™);

The following table lists the methods of the ParamScriptable object.

Method Parameters Returns Description

deleteParam N/A N/A Deletes the parameter

getConstraint N/A Returns the parameter constraint = Gets the parameter constraint

getAllValues N/A The entire array of values within Retrieves the entire array of
the parameter. values within the parameter.

getElementCount N/A The number of elements in the Gets the number of elements in
parameter array, as an Integer. the parameter array.

getindex N/A Returns the array index of the Gets the array index of the
current element current element

getOid N/A Returns the OID of the changed Gets the OID of the changed
parameter parameter

getValue N/A Returns the value of the changed Gets the value of the changed
element element

getValueAsString N/A Returns a string representation of Gets a string representation of
the changed value the changed value

getValueAt Integer [index] Returns a string representation of = Gets a string representation of
the value at the provided index the value at the provided index

getValueAtAsString Integer [index] Returns a string representation of ~Gets a string representation of
the value at the provided index the value at the provided index

setValue String [value] N/A Sets the value of the changed

element to the provided value.
getName N/A Returns the parameter name Gets the parameter name
replaceConstraint String N/A Replaces the parameter's

remove
isArrayParameter

resetAllValues

setValueAt

getElementCount

[Constraint]
N/A

N/A

N/A

Integer [index]
String [value]

N/A

N/A
Returns true if the parameter is

an array element
N/A

N/A

Returns the number of elements
in the array

constraint to the provided value

Removes the current array
element

Checks whether the parameter
is an array element

If the parameter is a copy of a
base parameter, this function
resets the parameter’s values
to those of the base parameter.

Sets the value of element at
the provided index to the
provided value.

Gets the number of elements in
the array

268 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

rosstalk Object

In ogScript, use the rosstalk object to communicate over the network to other devices that speak
RossTalk protocol. Functions in the rosstalk object are typically set through a user interface.

Also see, rosstalkex Object.

To call a general-purpose function, use:

rosstalk. function name (parameters) ;

For example:

rosstalk.setHost (Server01l) ;

The following table lists the functions of the rosstalk object.

Function
setHost

getHost

setPort

getPort

sendAsBytes

sendAsBytes

sendAsBytesToGroup

sendAsBytesWithResponse

Parameters
String [Host]

N/A

Integer [Port]

N/A

String [Host], Int [Port],
String [Bytes as Hex String]

String [Host], Int [Port],

String [Bytes as Hex String],
Function [Callback]

String [Group], String [Host],
Int [Port],

String [Bytes as Hex String],
Function [Callback]

String [Host], Int [Port],
String [Bytes as Hex String],
String [responseBytes],
Function [Callback]

Returns
N/A

String

N/A

Integer

N/A

N/A

N/A

Response
message
provided by
the recipient.

Description

Set a default host to use for
RossTalk commands where no
host has been defined.

Get the default host previously
defined.

Set a default port to use for
RossTalk commands where no
host has been defined.

Get the default port previously
defined.

Equivalent of calling:
sendAsBytes(host, port, bytes,
null);

Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9...") and
send them to the provided host
at the provided port. Invoke the
callback function when done.

Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9...") and
send them to the provided host
at the provided port. Invoke the
callback function when done.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9...") and
send them to the provided host
at the provided port. Invoke the
callback function when done.
The [responseBytes] string,
when received from the
recipient, indicates the end of
the response message.

DashBoard CustomPanel Development Guide

ogScript Reference e 269

Function
sendAsBytesWithResponseToGroup

sendBytes

sendBytesToGroup

sendBytesWithResponse

sendBytesWithResponseToGroup

sendMessage

sendMessage

sendMessage

sendMessage

Parameters

String [Group], String [Host],
Int [Port], String [Bytes as
Hex String], String
[responseBytes] Function
[Callback]

String [Host], Int [Port],

byte[] [Data to Send],
Function [Callback]

String [Group], String [Host],
Int [Port], byte[] [Data to
Send], Function [Callback]

String [Host], Int [Port],

byte[] [Data to Send], Byte
[responseTerminator]
Function [Callback]

String [Group], String [Host],
Int [Port], byte[] [Data to
Send], Byte
[responseTerminator]
Function [Callback]

String [RossTalk Command]

String [RossTalk Command],
Function [Callback]

String [Host], Int [Port],
String [RossTalk Command]

String [Host], Int [Port],

String [RossTalk Command]
Function [Callback]

Returns

Response
message
provided by
the recipient.

N/A

N/A

Response
message
provided by
the recipient.

Response
message
provided by
the recipient.

N/A

N/A

N/A

N/A

Description

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

The [responseBytes] string,
when received from the
recipient, indicates the end of
the response message.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

The [responseTerminator] byte,
when received from the
recipient, indicates the end of
the response message.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

The [responseTerminator] byte,
when received from the
recipient, indicates the end of
the response message.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

Equivalent of calling:
sendMessage (getHost(),
getPort(), RossTalk Command,
null);

Equivalent of calling:

sendMessage (getHost(),
getPort(), RossTalk Command,
Callback);

Equivalent of calling:

sendMessage (Host, Port,
RossTalk Command, null);

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.

270 e ogScript Reference

DashBoard CustomPanel Development Guide

Function Parameters Returns

sendMessageToGroup String [Group], String [Host], N/A
Int [Port], String [RossTalk
Command] Function
[Callback]

sendMessageWithResponse String [Host], Int [Port], Response

String [RossTalk Command], message
String [responseTerminator], =~ Provided by

Function [Callback] the recipient.

sendMessageWithResponseToGroup String [Group], String [Host], Response
Int [Port], String [RossTalk message
Command], String provided by

[responseTerminator], the recipient.

Function [Callback]

Description

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.

The [responseTerminator]
string, when received from the
recipient, indicates the end of
the response message.

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.

The [responseTerminator]
string, when received from the
recipient, indicates the end of
the response message.

The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

DashBoard CustomPanel Development Guide

ogScript Reference o 271

rosstalkex Object

In ogScript, you can use the rosstalkex object to communicate over the network to other devices that
speak RossTalkEx protocol. You can use RossTalk Ex commands to trigger specific events, or to send
generic RossTalkEx commands. You can also send RossTalk commands through RossTalkEx, but you
cannot do the reverse.

DashBoard sends RossTalkEx commands to XPression using an authenticated RossTalkEx connection.
This differs from the method that other RossTalk commands use, which is an open TCP protocol.

To call a general-purpose function, use:

rosstalkex. function name (parameters) ;

For example:

rosstalkex.sendMessage ("10.3.2.1", 8020, "DATALINQKEY 101l:kl:v1", null);

The following table lists the functions of the rosstalkex object.

Function Parameters Returns Description
getConnection String [Host], Integer [Port], |f the handshake is This is an optional command that
Boolean [Creation Flag] successful, the users can use to open and

connection object authenticate a connection to an
is returned. If the XPression. An authentication
handshake is not request will be sent.

successful, anull Once a connection is opened, it will

value is returned. remain open for the life of the panel
(assuming it is not explicitly closed
by either end).

If users use FALSE as the creation
flag, then the getConnection function
will simply return the existing
connection if it was previously
opened, or null if it was not.

The creation flag command is
optional, because when the
sendMessage or
sendMessageWithResponse
commands are executed in a panel,
if the connection with the host is not
open, then the getConnection
function is first executed
automatically.

Once a connection is established,
the message is sent using the XML

API wrapper.
sendMessage String [Host], Integer [Port], |f the This command calls getConnection
String [Message], Function authentication is to initiate an authenticated
[Callback] not successful, no connection.
message is sent Once the connection is open,
and an error subsequent calls will not

message is thrown, aytomatically trigger the

otherwise, nothing getConnection function.
is returned.

272 « ogScript Reference DashBoard CustomPanel Development Guide

robot Object

In ogScript, use the robot object to communicate with CamBot robotic cameras through the CamBot PC
User Interface. Functions in the robot object are typically set through a user interface.

To call a general-purpose function, use:

robot. function name (parameters) ;

For example:

robot.setHost (Server01l) ;

The following table lists the functions of the robot object.

Function Parameters Returns Description
setHost String [Host] N/A Set a default host to use for
CamBot commands where no
host has been defined.
getHost N/A String Get the default host
previously defined.
setPort Integer [Port] N/A Set a default port to use for
CamBot commands where no
host has been defined.
getPort N/A Integer Get the default port previously
defined.
sendCambot String [CamBot N/A Equivalent of calling:
Command] sendCambot (getHost(),
getPort(), command, null)
sendCambot String [CamBot N/A Equivalent of calling:
Command] Function sendCambot (getHost(),
[Callback] getPort(), CamBot Command,
Callback);
sendCambot String [Host], Int [Port], N/A Equivalent of calling:
String [CamBot sendCambot (Host, Port,
Command] CamBot Command, null);
sendCambot String [Host], Int [Port], N/A Send the provided CamBot

String [CamBot

command to the provided host

at the provided port. Invoke
the callback function when
done.

Callback function signature:
Function (Boolean success,
String sentData, String
receivedData, Exception
javaException)

Command] Function
[Callback]

vdcp Object
In ogScript, use the vdcp object to communicate with BlackStorm video servers. Functions in the vdcp
object are typically set through a user interface.

To call a general-purpose function, use:

vdcp.function name (parameters) ;

For example:

vdcp.setHost (Server01l) ;

The following table lists the functions of the vdcp object.

DashBoard CustomPanel Development Guide ogScript Reference e 273

Function
setHost

getHost

setPort

getPort

activeClip

clipDuration

continuePlay

cueClip
cueClip

fastForward

fastForward

listClips

pause

pause

play
rewind

rewind

stop
stop

Parameters

String [Host]

N/A

Integer [Port]

N/A

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel],
String [ClipID], Function [Callback]

String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel]
String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel],
Function [Callback]

String [Host], Int [Port], Int [Channel]

String [Host], Int [Port], Int [Channel],
Function [Callback]

Returns Description

N/A

String

N/A

Integer

N/A

N/A

N/A

N/A
N/A

N/A
N/A

N/A

N/A
N/A

N/A
N/A
N/A

N/A
N/A

Set a default host to use for VDCP
commands where no host has been
defined.

Get the default host previously
defined.

Set a default port to use for VDCP
commands where no host has been
defined.

Get the default port previously
defined.

Fetch the active clip ID for the
provided channel from the server at
the provided host/port. Invoke the
callback with the active clip ID when
done.

Callback function signature:
Function (Boolean success, String
sentCommand, String resultString,
Exception javaException)

Fetch the duration [HH:MM:SS:FF]
of the clip with the given ID. Invoke
the callback with the clip duration
when done.

Callback function signature:

Function (Boolean success, String
sentCommand, String resultString,
Exception javaException)

Sends the vdcp continuePlay
command.

Sends the vdcp variPlay command.

nkScript Object

In ogScript, use the nkScript object to control NK Router OGLML tags used in Switchboard virtual

274 « ogScript Reference

DashBoard CustomPanel Development Guide

control panels. Functions in the nkScript object are usually set through a user interface.

The nkScript global object is only accessible in OGLML contexts that are declared as having a NK
Router context type or are beneath such a context in the OGML document hierarchy.

To call a general-purpose function, use:

nkscript. function name (parameters) ;

For example:

nkscript.setHost (Server01l) ;

The following table lists the functions of the nkscript object.

Function

convertCommaSeperat
edLevelsToMask

doSwitch

doSwitch

doSwitchWithLabels

getActiveDst

getActiveDstName

getActivelPS
getActivelPSName

getActiveSrc

getActiveSrcName

getActiveSystem
getDstName

getLevelMask

Parameters

String [Levels], Boolean
[SearchTags]

N/A

Int [Dst],
Int [Src], Long [Levels]

String [Destination],
String [Source], String
[Levels]

N/A

N/A

N/A
N/A

N/A

N/A

N/A
String [Source]

N/A

Returns

Long Levelmask

Boolean

Boolean

Boolean

Int

String

String
String

Int

String

NKSystem
String

Long

Description

Allows conversion of a list of
levels to the appropriate level
mask. Level mask is a bit field
where you can have up to 32
levels set 'on' at a time.
SearchTags should always be
'true’.

Equivalent of calling:
doSwitch(getActiveDst(),

getActiveSrc(),
getLevelMask());

Do a switch on the active IPS
to route the given destination
to the given source on the
given levels.

Allows you to switch between
levels by name.

Get the active destination
number

(0-indexed). Returns -1 if
there is no active destination.

Get the name of the active
destination (from the
switchboard configuration).
Returns null if there is no
active destination.

Get the serial number of the
active IPS.

Get the name of the active
IPS.

Get the active source number
(0-indexed). Returns -1 if
there is no active source.

Get the name of the active src
(from the switchboard
configuration).

Returns null if there is no
active source.

Get the currently active
NKSystem.

Get the destination name of
the given source.

Get the current level mask (as
a bit field)

Level mask is a bit field where

DashBoard CustomPanel Development Guide

ogScript Reference e 275

Function

getLevelName

getProtectStatus

getSrcName

getStatus

isLevelActive

isMCFlag

isProtected

isProtected

isProtectedByMe

isSrcActive

isSrcActive

isVirtual

setActiveDst

setActivelPS

setActiveSrc

setLevelActive

setLevelMask

setMCFlag

setProtected

setVirtual

Parameters

String [Source]
String [Destination],
String [Levels]
String [Source]

String [Destination],
String [Level]

Int [Level Num]

N/A

N/A

Int [Destination], Long
[Levels]

N/A

Int [Src]

Int [Dst],

Int [Src], Long [Levels]

N/A

Int [Dst]

String [Serial]

Int [Src]

Int [Level Num], Boolean

[Active]
Long [Level Mask]

Boolean

Boolean

Boolean

Returns

String

Boolean

String
Int

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

N/A

Boolean

N/A

Boolean

N/A

Boolean

Boolean

Boolean

Description
you can have up to 32 levels
set 'on' at a time.

Get the level name of the
given source.

Get the protect status of the
destination level.

Get the source name.

Get the status of the given
destination level.

Is the current level active.
Equivalent to asking:
levelMask & (1 << levelNum)
1=0;

Is the Machine Control flag
set.

Verifies whether the active
destination is protected or not.

Verifies whether the given
destination is protected; or
not.

Is the active destination
protected by this virtual panel.

Verifies whether the given
source is active on the active
destination of all levels.

Verifies whether the provided
source is active on the
specified destination and level
mask.

Verifies whether virtual routing
is in use (for switch
commands and status
requests).

Set the active destination (0-
indexed).

Set the IPS with the given
serial number as the active
IPS to receive commands and
send status.

Deactivate any currently
active IPS.

Set the active source (0-
indexed).

Set the given level as active.

Set the complete level mask
bitfield.

Set the Machine Control flag
to true or false.

Request the router to protect
the active destination.

Set virtual routing on/off for
switch commands and status
requests.

276 ¢ ogScript Reference

DashBoard CustomPanel Development Guide

Returns
Boolean

Function Parameters
verifyConfiguration N/A

Description
Re-activate the current IPS.

webcam Object

In ogScript, use the webcam object to manage webcam widgets within a CustomPanel.
To call a general-purpose function, use:

webcam. function name (parameters);

For example:

webcam.getWebcamResolution (“"CamProl”)

The following table lists the functions of the webcam object.

Function
getWebcamResolution

getAvailableWebcams
getActiveWebcam

getWebcamResolutions

getHighestSupportedR
esolution

getWebcamFillModes

setWebcamResolution

isWebcamInRegistry

setWebcamSource

closeWebcamSource
setWebcamFillMode

Parameters
String [webcamName]

N/A
String [widgetld]

String [webcamName]

String [webcamName]

N/A

String[widgetld], String
[webcamName]

String [webcamName]

String [wigetld], String
[webcamName]

String [webcamName]

String [widgetld], String
[webcamName]

Returns
String

String
String

String

String

String

N/A

Boolean

N/A

N/A
N/A

Description

Get the resolution of the
webcam.

e.g. “1920x1080”
Get available webcams.

Get the current webcam name
rendered by a specific
webcam widget id.

Get a list of available webcam
resolutions.

Note that the library may not
detect all supported webcam
resolutions. If a selected
resolution it is not found, then
the best supported resolution
detected by the library will be
set.

Get the highest supported
resolution for the webcam.

Get a list of supported widget
fill modes for the entire
application.

Set the resolution for the
webcam. If a resolution that is
believed to be supported by
your webcam is not listed, you
can set it manually.

Verifies whether the webcam
is available and detected by
the application.

Set the webcam source of a
specific widget.

Close a specific webcam.

Set the fill mode of a specific
widget.

DashBoard CustomPanel Development Guide

ogScript Reference e 277

NDI Object

In ogScript, use the NDI object to manage NDI and NDI widgets within a CustomPanel.
To call a general-purpose function, use:

ndi.function name (parameters);

For example:

ndi.getNDISourceNames ()

The following table lists the functions of the NDI object.

Function Parameters Returns Description

getNDISourceNames N/A String Get a list of available NDI
source names.

getNDISources N/A String Get a list of NDI sources as
objects.

getDestination String [name] String Get the NDI destination as an
object.

closeDestination String [name] N/A Close an NDI destination.

closeDestination String [name], String N/A Close an NDI destination

[group] within a certain group.

RPM Object

In ogScript, use the RPM object to manage CustomPanels within RPM. Note that this function only
works in RPM. You can use the ogscript.getBuild () function to determine whether you are in
RPM or not. An example of this would be:
/*
* RPM 3.11 and earlier return undefined, RPM 3.12 onwards will
return build info containing "RPM"

*/
function isRpm () {
var build = ogscript.getBuild();
return build === undefined || build.contains ("RPM")

// The rpm object does not exist in DashBoard, only execute if
we're running in RPM
if (isRpm()) {
rpm. logout () ;
}

To call a general-purpose function, use:

rpm. function name (parameters);

For example:

rpm.logout ()

The following table lists the functions of the RPM object.

Function Parameters Returns Description

logout Boolean N/A Logs the current user out of
the RPM server. If the
CustomPanel is public, this
call is ignored.

278 e ogScript Reference DashBoard CustomPanel Development Guide

Appendices

In This Section

See appendices in the bookmark navigation.

Appendix A: Widget Hint Definitions

// widget hints for all parameter types

#define WIDGET DEFAULT 0 // let DashBoard decide
#define WIDGET TEXT DISPLAY 1 // display as text, read only
#define WIDGET HIDDEN 2 // do not display

// widget hints for numeric types with NULL CONSTRAINT or RANGE CONSTRAINT

#define WIDGET SLIDER_ HORIZONTAL 3 // slider (RANGE only)

#define WIDGET SLIDER VERTICAL 4 // slider (RANGE only)

#define WIDGET SPINNER 5 // spinner

#define WIDGET TEXTBOX 6 // numeric entry field

#define WIDGET PROGRESS BAR 17 // progress bar (RANGE only)
#define WIDGET AUDIO METER 19 // audio meter (RANGE only)
#define WIDGET MENU POPUP 20 // popup menu with the ID(INT ONLY)
#define WIDGET TIMER 21 // countdown/up timer (RANGE only)
#define WIDGET SLIDER H NO LABEL 24 // unlabeled slider (RANGE only)
#define WIDGET SLIDER V NO LABEL 25 // unlabeled slider (RANGE only)
#define WIDGET VERTICAL FADER 26 // vertical fader bar (RANGE only)
#define WIDGET TOUCH WHEEL 27 // touch wheel (RANGE only)
#define WIDGET HEX SPINNER 28 // base 16 spinner (RANGE only)
#define WIDGET ABSOLUTE POSITIONER 29 // absolute x,y positioner
#define WIDGET CROSSHAIR 30 // joystick-like x,y positioner
#define WIDGET JOY STICK 34 // joystick x,y positioner

// widget hints for integer types with CHOICE CONSTRAINT

#define WIDGET COMBO_ BOX 7 // combo box - usually the default
#define WIDGET CHECKBOX 8 // two choices

#define WIDGET RADIO HORIZONTAL 9 // radio buttons

#define WIDGET RADIO VERTICAL 10 // radio buttons

#define WIDGET BUTTON_ PROMPT 11 // single choice

#define WIDGET BUTTON NO PROMPT 12 // single choice

#define WIDGET BUTTON TOGGLE 13 // two choices

#define WIDGET FILE DOWNLOAD 18 // external object OID/filename pairs
#define WIDGET RADIO_TOGGLE_ BUTTONS 22 // display a toggle button for choices
#define WIDGET TREE 31 // display a tree with choices
#define WIDGET TREE POPUP 32 // display a tree in a combo box

DashBoard CustomPanel Development Guide Widget Hint Definitions e 279

// widget hints for INT32 PARAM

#define WIDGET IP ADDRESS 14 // nnn.nnn.nnn.nnn
#define WIDGET COLOR_CHOOSER 23 // argb color chooser
#define WIDGET COLOR_CHOOSER_ POPUP 33 // argb color chooser in popup

// widget hints for integer arrays
#define WIDGET ARRAY HEADER VERTICAL 15 // array layout specification
#define WIDGET ARRAY HEADER HORIZONTAL 16 // array layout specification

// widget hints for STRING PARAM

#define WIDGET TEXT ENTRY 3 // normal text entry field

#define WIDGET PASSWORD 4 // uses password entry field
#define WIDGET TITLE LINE 5 // layout hint - read only

#define WIDGET LINE ONLY 6 // layout hint - read only

#define WIDGET TITLE ONLY 7 // layout hint - read only

#define WIDGET PAGE TAB 8 // layout hint - read only

#define WIDGET LICENSE 9 // RossKeys license adapter
#define WIDGET TITLE HEADER 10 // layout hint - read only

#define WIDGET COMBO ENTRY 11 // combo box plus entry field
#define WIDGET ICON DISPLAY 12 // icon plus text display

#define WIDGET RICH LABEL 13 // multi-line display (html format)
#define WIDGET MULTILINE TEXT ENTRY 14 // multi-line text entry (non-html)

// widget hints for STRING PARAM (used with special OID 255.1)

#define WIDGET NAME OVERRIDE APPEND 0

#define WIDGET NAME OVERRIDE REPLACE 1

// deprecated names - here for backward compatibility
#define WIDGET NONE WIDGET DEFAULT

#define WIDGET COMBO WIDGET COMBO_BOX

#define WIDGET RADIO WIDGET RADIO HORIZONTAL
#define WIDGET HSLIDER WIDGET SLIDER HORIZONTAL
#define WIDGET VSLIDER WIDGET SLIDER VERTICAL

280 ¢ Widget Hint Definitions DashBoard CustomPanel Development Guide

Appendix B:Reserved Object IDs

Reserved OIDs

Parameter OIDs in the set 0XFF0O0 to OxFFFF are reserved for future protocol messages. Apart from
these, there are several other OIDs that have special significance in DashBoard.

Name OoID Type Constra | Function
int
SUPPLIER_NAME* 0x0102 String N/A Name of the card manufacturer or OEM

supplier (i.e. who customer should call for
support). Reported as a generic card

parameter by SNMP.
PRODUCT_NAME** 0x0105 String N/A The product name used to identify the
(32- card in DashBoard. This name should not
bytes change. For display purposes, an
max) alternate name can be provided via OID
OxFFO1.
Reported as a generic card parameter by
SNMP.
SERIAL_NUMBER 0x0106 String N/A Unique serial number.
SOFTWARE_REV*+ 0x010B String N/A This value is used by a card to report
(20- information about its software load. The
bytes value should be meaningful to the people
max) supporting the card.
Reported as a generic card parameter by
SNMP.
FPGA_REV+ 0x010C String N/A This value is used by DashBoard

compare software versions when
uploading the Main Board FPGA Type
(upload type 1).

OPTION_SOFTWARE_REV+ 0x010D String N/A This value is used by DashBoard
compare software versions when
uploading the Option Board Software
Type (upload type 2).

OPTION_FPGA_REV+ 0x010E String N/A This value is used by DashBoard
compare software versions when
uploading the Option Board FPGA Type
(upload type 3).

SMPTE_STATUS 0x0201 Int16 N/A Card status to be reported via frame fault
LEDs.

Value of 0 indicates no error.
Non-zero values indicate error state.

CURRENT_MILLIS 0x0205 Int16 N/A Current consumption in milliamps at 12 V.

This may be used by the fan controller to
adjust fan speed for high-current cards.

EDIT_PERMISSION 0x0601 Int16 Choice Tells DashBoard that the card is editable.
If this OID is used, parameters on the
card will be editable only if the parameter
value is 0. If the parameter value is non-
zero, the card will display as read-only.

FRAME_POWER_CAPABILITY OxFEOF This OID is broadcast regularly to every
card in the frame. The value of the
parameter is the power available to each
slot a card occupies.

This value is calculated using the power

DashBoard CustomPanel Development Guide Reserved Object IDs ¢ 281

Name

oD

Type

Constra
int

Function

rating of the power supplies installed in
the frame (if the power supplies are
different, the lowest rating is used), minus
some overhead for the frame and frame
controller card, divided by the number of
slots in the frame.

[(Power supply rating - overhead) /
Number of slots in frame.]

A card may consume the power of
multiple slots, if the card occupies multiple
slots. For example, a card occupying two
slots may use two times the parameter
value.

NAME_OVERRIDE

OxFFO1

String

N/A

With a widget hint of 0, the value in this
String will be appended to the device
name (0x0105) when displayed in the
DashBoard tree and tabs. With a widget
hint of 1, the value in this String will be
displayed instead of the value in 0x0105
in the DashBoard tree and tabs.

CONNECT_VERIFY

OxFFO03

Mixed

N/A

This parameter is used for communicating
DashBoard'’s connection handshake and
response.

UPLOAD_URL

OxFF02

String

N/A

Alternate file upload target. This
overrides the behavior of the DashBoard
upload button.

If this value is “disable”, DashBoard will
disable the upload button on the device
page.

If this value is a valid URL, DashBoard
will upload files to this location via HTTP
POST.

FRAME_ID

OxFF04

String

N/A

Reserved for use by an openGear frame’s
Network Interface Card. If this parameter
is provided, its value MUST match the
unique ID provided by SLP and manual
SLP attribute queries. If it does not,
DashBoard will close its connection to the
frame.

BACKWARDS_COMPATIBILE

OxFF05

String
(20-
bytes
max)

N/A

Specifies the lowest software version to
maintain OID-compatibility with this
software version. If this OID is not
supplied, the lowest software version is
assumed to be the version specified in the
SOFTWARE_REYV OID (0x010B).

The card guarantees that all software
versions bounded by the version numbers
specified between OxFF05 and 0x010B
can be restored using the same stored set
of parameter values.

RESTORE_SET_DELAY

OxFF06

Int16

N/A

Specifies the delay to use between each
parameter set request during a card
restore. The restore set messages will
not be sent any faster than the specified
delay. This number must be between 0
and 1000 milliseconds.

If this value is not specified, a default of 0
is used. Parameters will be restored as
quickly as the card can process the

282 ¢ Reserved Object IDs

DashBoard CustomPanel Development Guide

Name

oD

Type

Constra
int

Function

PARAM_SET commands.

If the value is -1, DataSafe is disabled for
this card. Other negative values are not
valid at this time and should not be used.

RESTORE_START

OxFFO7

Int16

N/A

A parameter set request with a value of 1
will be sent to this parameter before the
card data is restored (the equivalent of a
button press in DashBoard).

If this parameter is provided, its position in
the list of OIDs returned by the
OGP_GET_PARAM_OIDS Response
defines where the range of saved
parameter values should start. No
parameters whose OID was returned
before this OID will be restored by
DataSafe.

RESTORE_STOP

OxFF08

Int16

N/A

A parameter set request with a value of 1
will be sent to this parameter after the
card data is restore is complete (the
equivalent of a button press in
DashBoard).

If this parameter is provided, its position in
the list of OIDs returned by the
OGP_GET_PARAM_OIDS Response
defines where the range of saved
parameter values should stop. No
parameters whose OID was returned after
this OID will be restored by DataSafe.

DATASAFE_NAME

OxFF09

String

N/A

Alternative card name for determining
DataSafe compatibility.

UPLOAD_NAME

OxFFOA

Int16

Choice

Alternative card name for file upload
purposes.

DISPLAY_OPTIONS

OxFFOB

Int16
ARRA

Each array element is used to define a
different display option.

Element 0 controls display of the card:
0 (Default) = Display the card in the tree
view

1 = Hide the card in the tree view

Element 1 controls the display of the slot
name before the card name:

0 (Default) = Display the slot name (e.g.
Slot 1: UDC-8225-W)

1 = Hide the slot name (e.g. UDC-8225-
W)

All other array elements are reserved for
future use.

DEVICE_ICON

OxFFOC

Int16

N/A

Contains an external object ID for an
encapsulated icon.

DEVICE_INDEX_URL

OxFFOD

String

N/A

URL for a DashBoard Connect XML
Definition.

OGLML_DESCRIPTOR

OxFFOE

String

N/A

Provides an OGLML URL that describes a

DashBoard CustomPanel Development Guide

Reserved Object IDs ¢ 283

Name oID Type Constra | Function
int

layout to use in place of the standard
configuration screen in DashBoard.

DEDICATED_CONNECTION OxFFOF Binary N/A Allows a card that has its own Ethernet
port to communicate directly with
DashBoard, bypassing the CAN bus and
MFC card. This allows traffic offloading
from the CAN bus, and also allows
messages to be sent to specific
DashBoards rather than all of them.

When connected, DashBoard will use this
connection to send all messages to the
card. DashBoard will continue to receive
updates from both the dedicated OGP
connection and the CAN Bus connection.

UTF-8 String for the hostname
UINT16 for the port

UINTS for the use

0 = Do not use

1 = Connect when Ul is visible

DEVICE_IP_ADDRESS O0xFF10 Int32 IP_AD Cards that have their own Ethernet port
DRESS should use this OID to report their current
IPv4 address.
FAN_SPEED_REQUEST OxFF11 Int16 N/A Used by cards in OG3-FR high power

frame to request additional fan cooling.
Card must send OGP_REPORT_PARAM
for this OID periodically (not to exceed
once per minute). Value of the parameter
varies depending on the cooling
capabilities of the frame.

OCCUPIED_SLOTS OxFF12 Int16 N/A Report the number of slots this card
occupies.

Value consists of two 8-bit fields,
representing the number of additional
slots to the left and right.

Value = (left << 8) | (right)

UPLOAD_FILE_EXTENSIONS OxFF13 String N/A Extensions of file types allowed to be sent
Array to the device. Arrau elements have the
format: “[Description]<ext:[extension
without dot]>”
RESERVED OxFF14 Reserved for future use
to
OxFFFF

** Required by DashBoard and SNMP.
* Required for SNMP.

+ Version numbers are important for software uploads and DataSafe. Please review section 5-9 for
recommended version number encodings.

SMPTE_STATUS, CURRENT_MILLIS, and EDIT PERMISSION are optional, but to avoid
misinterpretation, these OIDs should not be used for other parameters.

Reserved MFC and DashBoard Connect (slot 0) OIDs

Parameter OIDs in the range 0XFEOO to OXFEFF have special significance for the MFC network

284 ¢ Reserved Object IDs DashBoard CustomPanel Development Guide

controller (Slot 0) device. These also apply to any DashBoard Connect devices reporting on slot 0.

Name

OID

Type

Constra
int

Function

DOOR_STATE

0x0709

Int16

N/A

Broadcast by the MFC every 10 seconds to
indicate door status. 1= closed and 2= open

Deprecated field, see
FAN DOOR_STATUS on page 286.

SLOT_NAMES

0x803

Int16_Array

N/A

This array has one element for each slot in
the frame. Each element’s value is the OID
of a String parameter whose value should be
used as the name for the device in the given
slot.

SLOT_DATA_SAFE

0x802

Int16_Array

N/A

This array has one element for each slot in
the frame.

0 = DataSafe is enabled for the slot [Element
#]

Default = DataSafe is disabled for slot
[Element #] by the frame

URM_STATE

O0xFEO1

Int16

N/A

States whether the frame requires a User
Rights Management (URM) -Enabled
DashBoard (or a master password) is
required to connect to DashBoard.

0 (Default) = URM is not supported by the
frame

1 = URM is disabled/not required

2 = URM is enabled/required

MASTER_PASSWORD

OxFEO2

String
(20-bytes
max)

N/A

This is the value of the master password
required by DashBoard users to connect
when the User Rights Management server is
not available and the URM State is
“Enabled”

APPLY_BUTTON

OxFEO3

Int16

Choice

The button DashBoard must press to apply
changes to the master password or URM
state parameters.

CANCEL_BUTTON

OxFEO4

Int16

Choice

The button DashBoard can press to cancel
any changes to the master password or
URM state parameters. After the apply
button has been pressed, this button does
nothing.

DEVICE_CATEGORY

OxFEO05

String

N/A

Default: “openGear Devices”

Controls how items are grouped in User
Rights Management and in the DashBoard
tree view.

ltems sharing the same category are kept
together.

FRAME_ICON

OxFEO6

Int16

N/A

Contains an external object ID for an
encapsulated icon.

CONFIG_SLOT

OxFEO7

Int16

N/A

Default: 0

The slot # for the device to open when the
frame is ‘opened’ for configuration.

CONFIG_URL

OxFEO8

String

N/A

Default: [none]

If defined and non-empty, the URL of a web
page to open when the frame is ‘opened’ for
configuration.

INDEX_URL

OxFEO09

String

N/A

URL for a DashBoard Connect XML
Definition.

MASTER_PASSWORD
_SAVE

OxFEOA

String

N/A

Same as 0xFEO2 above, but used for
internal storage on the MFC controller.

DashBoard CustomPanel Development Guide

Reserved Object IDs ¢ 285

Name oD Type Constra | Function

int
FAN_DOOR_STATUS OxFEOB Int16 N/A Broadcast by the MFC every 10 seconds to
indicate door status.
1= closed
2= open
This replaces legacy OID 0x0709.
FAN_AMBIENT_TEMP OxFEOC Int16 N/A Broadcast by the MFC every 10 seconds to

report the ambient temperature of inlet air.
0 = fan door is open
Otherwise temperature in degrees Celsius.

FAN_SPEED_REPORT OxFEOD Int16 N/A Broadcast by the MFC every 10 seconds to
report current door fan speed.

0 = minimum speed (or fan door open)
Higher values indicate increasing speed.
Max value depends on DFR frame type.

RESERVED OxFEOE Reserved for future use

OxFEFF

286 ¢ Reserved Object IDs DashBoard CustomPanel Development Guide

	Cover
	Thank You for Choosing Ross
	Guide Information
	Contents
	Introduction
	About this Guide
	CustomPanel Overview
	PanelBuilder
	CustomPanel Framework
	Data Sources
	Datastore
	Application
	Client Interface
	openGear Protocol
	Resource XML File
	openGear Layout Markup Language (OGLML)
	ogScript

	Getting Started
	Building a CustomPanel Application

	DashBoard Data Model
	In This Section
	Device Data Model
	Data Object Hierarchy
	Device / Card
	Parameters
	Object Identifiers (OIDs)
	Descriptors

	Constraints
	Unconstrained
	Range Constraints
	Choice Constraints
	Alarms
	External Constraints

	Parameter Structure Objects
	Parameter References
	Menus
	Default Menu Layout
	OGLML Menu Layout

	Customizing Menus Using Display Hints
	Universal Hints
	Separators, Titles and Layout Hints
	Array Layout Hints
	WIDGET_ARRAY_HEADER_VERTICAL (15)
	WIDGET_ARRAY_HEADER_HORIZONTAL (16)

	INT16/INT32 Parameters with Choice Constraints
	WIDGET_COMBO_BOX (7)
	WIDGET_CHECKBOX (8)
	WIDGET_RADIO_HORIZONTAL (9)
	WIDGET_RADIO_VERTICAL (10)
	WIDGET_BUTTON_NO_PROMPT (12)
	WIDGET_BUTTON_PROMPT (11)
	WIDGET_BUTTON_TOGGLE (13)
	WIDGET_FILE_DOWNLOAD (18)
	WIDGET_MENU_POPUP (20)
	WIDGET_RADIO_TOGGLE_BUTTONS (22)
	WIDGET_TREE (31)
	WIDGET_TREE_POPUP (32)

	Hints for Numeric Parameters with Other Constraints
	WIDGET_SLIDER_HORIZONTAL (3)
	WIDGET_SLIDER_VERTICAL (4)
	WIDGET_SLIDER_HORIZONTAL_NO_LABEL (24)
	WIDGET_SLIDER_VERTICAL_NO_LABEL (25)
	WIDGET_VERTICAL_FADER (26)
	WIDGET_TOUCH_WHEEL (27)
	WIDGET_PROGRESS_BAR (17)
	WIDGET_SPINNER (5)
	WIDGET_TEXTBOX (6)
	WIDGET_IP_ADDRESS (14)
	WIDGET_AUDIO_METER (19)
	WIDGET_TIMER (21)
	WIDGET_HEX_SPINNER (28)
	WIDGET_ABSOLUTE_POSITIONER (29)
	WIDGET_CROSSHAIR (30)
	WIDGET_JOY_STICK(34)
	WIDGET_COLOR_CHOOSER(23)
	WIDGET_COLOR_CHOOSER_POPUP(33)
	WIDGET_GRAPH (256)
	WIDGET_EQ_GRAPH (46)

	Hints for String Parameters
	WIDGET_TEXT_ENTRY (3)
	WIDGET_PASSWORD (4)
	WIDGET_COMBO_ENTRY (11)
	WIDGET_COLORED_DOT (12)
	WIDGET_RICH_LABEL (13)
	WIDGET_MULTILINE_TEXT_ENTRY (14)
	WIDGET_NAME_OVERRIDE_APPEND (0)
	WIDGET_NAME_OVERRIDE_REPLACE (1)

	Hints for STRUCT Types
	WIDGET_TABLE (36)

	Data Types
	Endianness
	Number Encoding
	String Encoding

	External Data Objects
	Constraint
	Data File
	Image
	OGLML Descriptor or Index XML
	File

	OGLML Documents
	Containers
	Contexts
	OGLML Document Structure
	OGLML URLs
	OGLML Descriptor Format

	Custom Widgets
	Creating Widgets
	Widget Descriptor Structure
	OGLML Block
	Config Block

	Widget Samples
	Numeric Keypad

	Descriptor Location
	Inline Widget Descriptors
	External Widget Descriptor Files
	Device-served Widget Descriptors

	Parameter Mapping
	Using DashBoard Prebuilt Custom Widgets
	To Add a Custom Widget in DashBoard
	ogScript Macro Group Widget
	To Configure the ogScript Macro Group Widget

	XPression Desktop Preview 1.0
	To Configure the XPression Desktop Preview in DashBoard

	XPression CountDown 1.0
	To Configure the XPression CountDown Widget

	Custom APIs Within CustomPanels
	Lexical Order and Loading Order
	Interaction with On Load Handlers
	Example to Demonstrate the Effects of Lexical Order and Loading Order
	Example – Part 1: Simple API Plus an onload Handler
	Example – Part 2: .grid File with <api/> Defined After <ogscript/> Element
	Example – Part 3: Putting an Object in the Global Namespace
	Example – Part 4: Adding an <api> Tag that Conflicts with a Previous <api> Tag
	Example – Part 5: API Definition with immediate="true"

	Loading order with Minimal Mode and Subscriptions Protocols

	Enabling Reuse by Keeping APIs in Separate Files
	Managing Scope
	The Module Pattern
	Transcendental Vectors Engine <api/>
	Pressurized Water Reactor <api/>

	OGLML Reference
	In This Section
	General Attributes
	Using OGP Devices that Support Subscriptions Protocol
	subscriptions
	Examples

	openGear Style Hints
	Style Hint Reference
	style Style Hint
	Component Color
	Predefined Colors
	Border Styles
	Text/Font Styles
	Icon Styles
	Tooltip Style
	Inset Style
	Background Styles
	Button Style Modifiers

	Layout/Container Tags
	abs
	borderlayout
	flow
	popup
	pager
	simplegrid
	split
	tab
	table

	Top Level Attributes
	editlock
	encrypt
	gridsize
	keepalive

	Widget Tags
	drawer
	wizard
	reveal
	ext
	exit
	help
	image
	label
	button
	browser
	blank
	lock
	memory
	widget
	webcam
	NDI

	Non-UI Tags
	api
	context (device context)
	subscription
	meta
	widgets
	widgetdescriptor
	lookup
	style
	color
	ogscript
	constraint
	Constraint Types
	constraint (Unconstrained)
	constraint (Constraint Reference)
	constraint (Range Constraints)
	constraint (Integer Choice Constraints)
	constraint (String Choice Constraints)
	constraint (Alarm Table)
	constraint (Struct Constraints)

	params
	timer
	listener
	task
	timertask
	include

	Device Resource Declarations
	Resource XML File
	commands
	command
	config
	constraint
	card
	frame
	menu
	menugroup
	statusmenu
	configmenu
	params
	param
	param (struct)

	Device Resource Tags
	menugroup
	menu
	param
	constraint
	buttonbar
	editor
	summary
	statuscombo

	Macro Expansion
	%frame%
	%device%
	%slot%
	%value%
	%widget%
	%const%
	%baseoid%
	%fully-qualified-id%
	%panel-path%
	%app-path%
	%id%
	%eval[ogscript]%

	ogScript Reference
	About ogScript
	JavaScript
	Commonly Used Functions
	Functions Set in the User Interface
	multiSetScriptable Object

	ogscript Object
	addOnClose
	addRemoteTrigger
	appendXML
	asyncExec
	asyncFTP
	asyncFTPGet
	asyncFTPListFiles
	asyncHTTP
	asyncPost
	cancelTimer
	closePanel
	colorToHSL
	copyByteArray
	copyText
	createAMPSender
	createAsyncExec
	createByteArray
	createFileInput
	createFileOutput
	createListener
	createMessageBuilder
	createMessageParser
	createVDCPSender
	debug
	fireGPI
	focus
	ftp
	ftpGet
	ftpListFiles
	getAllById
	getApplicationPath
	getAsyncExecById
	getAttribute
	getBrowserById
	getBuild
	getComponentsById
	getContextId
	getCurrentUser
	getFile
	getFileSize
	getImageById
	getIncludeById
	getListenerById
	getModificationDate
	getObject
	getPanelPath
	getPanelRelativeURL
	getPosition
	getPrivateString
	getScopedAttribute
	getSize
	getString
	getTimerManager
	hide
	hslToColorString
	http
	installTimer
	isClosed
	isTimerRunning
	jsonToString
	parseXML
	pasteText
	putObject
	putPrivateString
	putString
	reload
	rename
	reposition
	repositionByPercent
	reveal
	runXPath
	saveToFile
	sendUDPAsBytes
	sendUDPBytes
	sendUDPString
	setAnchorPoints
	setSize
	setStyle
	setXML
	toBottom
	toTop
	upload

	params Object
	params Functions
	createCopy
	createIntChoiceConstraint
	createLinkedCopy
	createMultiSet
	createParam
	createStringChoiceConstraint
	deleteParam
	getAllValues
	getConstraint
	getDeviceStatus
	getElementCount
	getIdentifiedConstraint
	getParam
	getParam(OID, Index).remove
	getStream
	getValue
	getValueAsString
	isDeviceOnline
	isDeviceReadOnly
	isPrivateParamContext
	replaceConstraint
	replaceViewConstraint
	resetAllValues
	setAccess
	setAllValues
	setMenuState
	setPrivateParamContext
	setStream
	setValue
	setValueRelative
	subscribe
	unsubscribe
	toOid

	ParamScriptable Object
	rosstalk Object
	rosstalkex Object
	robot Object
	vdcp Object
	nkScript Object
	webcam Object
	NDI Object
	RPM Object

	Appendices
	In This Section
	Appendix A: Widget Hint Definitions
	Appendix B: Reserved Object IDs
	Reserved OIDs
	Reserved MFC and DashBoard Connect (slot 0) OIDs

