

FACILITY CONTROL SYSTEM

CustomPanel Development Guide
OGLML and ogScript

Version 9.16

ii • Thank You for Choosing Ross DashBoard CustomPanel Development Guide

Thank You for Choosing Ross
You've made a great choice. We expect you will be very happy with your purchase of Ross Technology.
Our mission is to:

1. Provide a Superior Customer Experience
• offer the best product quality and support
2. Make Cool Practical Technology
• develop great products that customers love

Ross has become well known for the Ross Video Code of Ethics. It guides our interactions and empowers
our employees. I hope you enjoy reading it below.
If anything at all with your Ross experience does not live up to your expectations be sure to reach out to
us at solutions@rossvideo.com.

David Ross CEO, Ross Video
dross@rossvideo.com

Ross Video Code of Ethics
Any company is the sum total of the people that make things happen. At Ross, our employees are a
special group. Our employees truly care about doing a great job and delivering a high quality customer
experience every day. This code of ethics hangs on the wall of all Ross Video locations to guide our
behavior:
1. We will always act in our customers’ best interest.
2. We will do our best to understand our customers’ requirements.
3. We will not ship crap.
4. We will be great to work with.
5. We will do something extra for our customers, as an apology, when something big goes wrong and

it's our fault.
6. We will keep our promises.
7. We will treat the competition with respect.
8. We will cooperate with and help other friendly companies.
9. We will go above and beyond in times of crisis. If there's no one to authorize the required action in

times of company or customer crisis - do what you know in your heart is right. (You may rent
helicopters if necessary.)

mailto:dross@rossvideo.com

DashBoard CustomPanel Development Guide Thank You for Choosing Ross • iii

DashBoard CustomPanel Development Guide

• Ross Part Number: 8351DR-007-9.16
• Release Date: December 17, 2025

Copyright
© 2026 Ross Video Limited. Ross®, openGear®, and any related marks are trademarks or registered trademarks of Ross
Video Ltd. All other trademarks are the property of their respective companies. PATENTS ISSUED and PENDING. All
rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of Ross Video.
While every precaution has been taken in the preparation of this document, Ross Video assumes no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained
herein.

Patents
Patent numbers US 7,034,886; US 7,508,455; US 7,602,446; US 7,802,802 B2; US 7,834,886; US 7,914,332; US
8,307,284; US 8,407,374 B2; US 8,499,019 B2; US 8,519,949 B2; US 8,743,292 B2; GB 2,419,119 B; GB 2,447,380 B;
and other patents pending.

iv • Thank You for Choosing Ross DashBoard CustomPanel Development Guide

Company Address

Ross Video Limited Ross Video Incorporated

8 John Street P.O. Box 880

Iroquois, Ontario, K0E 1K0 Ogdensburg, New York

Canada USA 13669-0880

 General Business Office: (+1) 613 • 652 • 4886

 Fax: (+1) 613 • 652 • 4425

 Technical Support: (+1) 613 • 652 • 4886

 After Hours Emergency: (+1) 613 • 349 • 0006

 E-mail (Technical Support): techsupport@rossvideo.com

 E-mail (General Information): solutions@rossvideo.com

 Website: http://www.rossvideo.com

mailto:techsupport@rossvideo.com
mailto:solutions@rossvideo.com
http://www.rossvideo.com/

DashBoard CustomPanel Development Guide ogScript Reference • 5

Contents
Introduction 11

About this Guide ... 11
CustomPanel Overview ... 11

PanelBuilder .. 11
CustomPanel Framework .. 12

Getting Started ... 14
Building a CustomPanel Application .. 14

DashBoard Data Model 16
In This Section .. 16
Device Data Model .. 16

Data Object Hierarchy ... 16
Device / Card .. 17
Parameters ... 18
Constraints .. 20
Parameter Structure Objects .. 21
Parameter References .. 22
Menus .. 22

Customizing Menus Using Display Hints ... 24
Universal Hints.. 24
Separators, Titles and Layout Hints .. 24
Array Layout Hints ... 26
INT16/INT32 Parameters with Choice Constraints .. 28
Hints for Numeric Parameters with Other Constraints .. 34
Hints for String Parameters ... 44
Hints for STRUCT Types ... 48

Data Types ... 50
Endianness .. 50
Number Encoding ... 50
String Encoding ... 51

External Data Objects .. 51
Constraint .. 51
Data File .. 51
Image ... 51
OGLML Descriptor or Index XML ... 52
File .. 52

OGLML Documents .. 52
Containers ... 52
Contexts .. 52
OGLML Document Structure ... 52
OGLML URLs .. 53
OGLML Descriptor Format .. 53

Custom Widgets .. 54
Creating Widgets ... 55
Widget Samples .. 57
Descriptor Location ... 63
Parameter Mapping ... 64
Using DashBoard Prebuilt Custom Widgets ... 64

Custom APIs Within CustomPanels .. 75
Lexical Order and Loading Order ... 75
Enabling Reuse by Keeping APIs in Separate Files .. 81
Managing Scope .. 82

6 • ogScript Reference DashBoard CustomPanel Development Guide

OGLML Reference 84
In This Section ... 84
General Attributes ... 84

Using OGP Devices that Support Subscriptions Protocol ... 87
subscriptions .. 87
Examples ... 90

openGear Style Hints ... 91
Style Hint Reference ... 91
style Style Hint .. 92
Component Color .. 93
Predefined Colors .. 94
Border Styles ... 96
Text/Font Styles .. 96
Icon Styles ... 97
Tooltip Style .. 98
Inset Style .. 98
Background Styles .. 98
Button Style Modifiers .. 99

Layout/Container Tags .. 100
abs ... 101
borderlayout .. 103
flow ... 106
popup ... 107
pager .. 108
simplegrid .. 109
split .. 110
tab .. 112
table ... 113

Top Level Attributes .. 116
editlock .. 117
encrypt ... 117
gridsize .. 118
keepalive ... 118

Widget Tags .. 119
drawer.. 119
wizard .. 120
reveal ... 120
ext .. 121
exit ... 122
help .. 123
image ... 124
label ... 124
button .. 125
browser .. 126
blank .. 127
lock .. 127
memory ... 128
widget .. 129
webcam ... 131
NDI ... 131

Non-UI Tags .. 132
api .. 133
context (device context) .. 133
subscription ... 134
meta ... 135
widgets .. 135
widgetdescriptor .. 136
lookup.. 138
style ... 140
color .. 140

DashBoard CustomPanel Development Guide ogScript Reference • 7

ogscript .. 141
constraint ... 145
params ... 152
timer .. 152
listener ... 154
task .. 155
timertask .. 156
include ... 157

Device Resource Declarations ... 157
Resource XML File ... 157
commands ... 158
command ... 161
config .. 161
constraint ... 162
card .. 163
frame ... 164
menu .. 164
menugroup .. 165
statusmenu ... 166
configmenu .. 167
params ... 168
param ... 168
param (struct) .. 170

Device Resource Tags ... 172
menugroup .. 173
menu .. 173
param ... 174
constraint ... 176
buttonbar ... 176
editor ... 177
summary .. 178
statuscombo ... 178

Macro Expansion ... 180
%frame% ... 181
%device% .. 181
%slot% .. 181
%value% ... 181
%widget% ... 183
%const% .. 183
%baseoid% .. 184
%fully-qualified-id% ... 184
%panel-path% ... 184
%app-path% .. 184
%id% ... 185
%eval[ogscript]% .. 185

ogScript Reference 186
About ogScript .. 186

JavaScript .. 186
Commonly Used Functions .. 187
Functions Set in the User Interface .. 187
multiSetScriptable Object ... 187

ogscript Object .. 188
addOnClose ... 195
addRemoteTrigger ... 195
appendXML .. 196
asyncExec .. 196
asyncFTP ... 199
asyncFTPGet ... 201
asyncFTPListFiles ... 202

8 • ogScript Reference DashBoard CustomPanel Development Guide

asyncHTTP .. 203
asyncPost ... 204
cancelTimer ... 204
closePanel .. 205
colorToHSL .. 205
copyByteArray .. 206
copyText .. 206
createAMPSender ... 207
createAsyncExec ... 207
createByteArray .. 208
createFileInput... 208
createFileOutput .. 208
createListener .. 209
createMessageBuilder ... 209
createMessageParser ... 210
createVDCPSender ... 211
debug ... 211
fireGPI ... 211
focus .. 212
ftp .. 212
ftpGet .. 213
ftpListFiles .. 214
getAllById ... 215
getApplicationPath .. 215
getAsyncExecById .. 215
getAttribute ... 216
getBrowserById .. 216
getBuild ... 216
getComponentsById .. 217
getContextId .. 217
getCurrentUser .. 218
getFile.. 218
getFileSize ... 219
getImageById .. 219
getIncludeById .. 219
getListenerById ... 220
getModificationDate ... 220
getObject ... 221
getPanelPath .. 221
getPanelRelativeURL .. 222
getPosition ... 222
getPrivateString ... 223
getScopedAttribute .. 224
getSize ... 224
getString .. 225
getTimerManager .. 226
hide .. 229
hslToColorString ... 230
http .. 230
installTimer ... 231
isClosed ... 232
isTimerRunning ... 232
jsonToString .. 232
parseXML ... 233
pasteText ... 234
putObject ... 234
putPrivateString ... 235
putString .. 236
reload ... 236
rename ... 237

DashBoard CustomPanel Development Guide ogScript Reference • 9

reposition ... 238
repositionByPercent .. 238
reveal ... 239
runXPath ... 240
saveToFile ... 240
sendUDPAsBytes .. 241
sendUDPBytes .. 241
sendUDPString .. 242
setAnchorPoints .. 242
setSize ... 243
setStyle .. 243
setXML ... 244
toBottom .. 247
toTop ... 247
upload .. 248

params Object .. 249
params Functions ... 249
createCopy .. 251
createIntChoiceConstraint ... 252
createLinkedCopy ... 252
createMultiSet ... 252
createParam ... 254
createStringChoiceConstraint .. 254
deleteParam ... 255
getAllValues .. 255
getConstraint ... 255
getDeviceStatus ... 256
getElementCount ... 256
getIdentifiedConstraint .. 256
getParam .. 257
getParam(OID, Index).remove .. 257
getStream .. 258
getValue .. 258
getValueAsString .. 258
isDeviceOnline .. 259
isDeviceReadOnly ... 259
isPrivateParamContext .. 260
replaceConstraint ... 260
replaceViewConstraint .. 260
resetAllValues ... 261
setAccess ... 261
setAllValues .. 261
setMenuState ... 262
setPrivateParamContext .. 262
setStream ... 264
setValue ... 264
setValueRelative ... 265
subscribe .. 265
unsubscribe .. 266
toOid ... 267

ParamScriptable Object ... 268
rosstalk Object ... 269
rosstalkex Object ... 272
robot Object ... 273
vdcp Object .. 273
nkScript Object .. 274
webcam Object .. 277
NDI Object .. 278
RPM Object ... 278

10 • ogScript Reference DashBoard CustomPanel Development Guide

Appendices 279
In This Section ... 279
Appendix A: Widget Hint Definitions ... 279
Appendix B: Reserved Object IDs ... 281

Reserved OIDs .. 281
Reserved MFC and DashBoard Connect (slot 0) OIDs ... 284

DashBoard CustomPanel Development Guide ogScript Reference • 11

Introduction

 About this Guide
The CustomPanel Development Guide is part of the DashBoard Help Guide series. These guides aim to
help you get the most out of your DashBoard control management system.

DashBoard Help Guides include the following:
• DashBoard User Guide / Help – The complete reference guide for DashBoard.
• DashBoard CustomPanel Development Guide (this guide) – Learn how to develop custom panel

applications within DashBoard.
• DashBoard Server and User Rights and Management User Manual- Provides general information

on the DashBoard server, user rights, functions, and possible applications.
• NK Plugin Guide – Learn about NK plugins.

This guide describes the tools available for developing CustomPanel applications within DashBoard.

The following sections are included:
• DashBoard Data Model – An overview of how data and UI elements are stored in DashBoard.
• OGLML Reference – Describes OpenGear Layout Markup Language, which is an XML

specification for describing how UI elements are presented within the DashBoard client.
• ogScript Reference – Describes how to use ogScript, a JavaScript-based scripting language, to

define advanced behavior of CustomPanel applications.

CustomPanel Overview
CustomPanels are applications which run within the DashBoard client. These may be served up by a
device directly, or created by a user using DashBoard’s PanelBuilder feature, by writing XML code, or
a combination of both. CustomPanels may integrate control of multiple connected devices to provide
complete solutions to many workflow problems.

PanelBuilder
PanelBuilder is a DashBoard tool for creating custom interfaces for products from Ross Video and
partner companies, such as openGear cards, DashBoard Connect devices, CamBot robotic camera
systems, XPression graphics systems, Ultritouch, and Carbonite and Vision Production Switchers.

PanelBuilder allows users to create custom control interfaces with any combination of openGear control
and monitoring parameters from any combination of openGear cards and DashBoard Connect devices.
Users can build graphical navigation layouts based on signal flow or equipment location for efficient
device and signal monitoring. Custom control panel layouts can provide user, or function specific
control windows for specific events or situations that require quick access to various parameters from
multiple devices.

Benefits:

12 • ogScript Reference DashBoard CustomPanel Development Guide

• Create custom control panels. By eliminating unused controls, the operator can work with an
uncluttered, efficient GUI that's perfect for the task at hand.

• Group various controls together from multiple products. Focus on the production, not how it's being
produced.

• Create graphical navigation layouts. Present an overview of your facility with simple status
indicators that can be drilled into to get to the details.

With CustomPanels, you can:
• Allow your operators to focus on the production, and not on the equipment being used. This is

especially useful when operators are experts in what the production needs to be, but not how it's
made such as in a House of Worship, School, or Corporate setting.

• Support a new workflow using existing equipment. For example, you can select, preview, and
display static graphics using a Ross Video Master Control MC1-MK.

• Create a Network Operations Center view of geographically dispersed production equipment, with
system health status aggregating up through each level so that you can quickly drill down to where
the trouble is when faults occur.

• Integrate control of multiple devices into a single, logically laid out control surface. For example,
you can trigger graphics, video servers, and transitions from the same interface.

• Control other vendors' equipment. With over 50 openGear and DashBoard Connect partners, it's
quite likely that the equipment you want to control already understands DashBoard. Otherwise,
advanced users can take advantage of PanelBuilder's rich and powerful scripting support to
communicate with third-party equipment using UDP.

CustomPanel Framework
Applications built in DashBoard’s PanelBuilder are referred to as CustomPanels. Application
development in DashBoard employs a number of complementary technologies to provide user interface
applications. These include:

• openGear Protocol (OGP)
• Resource XML files
• openGear Layout Markup Language (OGLML)
• ogScript
• Other control protocols (such as VDCP, RossTalk, etc.)

The openGear ecosystem, in general, consists of Devices (such as openGear Cards, or stand-alone
products) and the DashBoard client. Devices communicate via network connection, and in the case of
openGear cards, through a CANBus interface.

params
menus

external objects
device

card

card

card

ogp
json

CANBus

o g p

TCP / IP

. xml
. ogd xml openGear

Plugin

oglml

ogScript

non - ogp device External data source

data store data source application client interface

file access

ogScript api

DashBoard CustomPanel Development Guide ogScript Reference • 13

Figure 1 – DashBoard Application Framework

DashBoard Panel applications consist of a number of elements that the designer uses to create an
application. These are:

• Data sources
• Internal data store
• Application
• Client Interface

Data Sources
Data may be sourced from several sources. These include:

• Physical devices connected via ogp
• XML files (.xml or .ogd)
• OGLML document with embedded parameter XML data
• Other external data sources

DashBoard manages synchronization between XML sources and, via OGP, physical devices. The data is
stored in DashBoard’s internal data store. The details of OGP and JSON protocols are available to
registered openGear partners, and are detailed in openGear Development Guide Part II - Software
(8200DR-006).

External data sources, not connected via OGP or a DashBoard xml file, must be managed by the user
application via ogScript.

DashBoard allows for multiple data sources to be connected to any application. This allows for multiple
devices in addition to local parameters and resources to be incorporated into a CustomPanel application.

Datastore
DashBoard maintains an internal data store of information. Using OGP or JSON protocol, DashBoard
retrieves information about the descriptor and value of parameters, menus, and external objects. Any
changes to the Data store from the client or application is transmitted back to the device. Any changes to
the Data store from the device are propagated to the Client. Code may be triggered when a parameter
changes based upon an ogScript onchange event registered against the parameter.

Application
The application can be implemented using a variety of tools, depending upon the particular
requirements. The application uses the data store to access device information. The following tools are
available for developing applications:

• openGear plug-in: The basic plug-in automatically generates a user interface based upon the
parameters and menus defined in the data store. The plug-in also supports OGP messaging to allow
other basic device control.

• OGLML: OGLML is a markup language that may be used to create CustomPanel control layouts
within DashBoard, beyond the default control layout provided by the openGear plug-in.
Applications built in OGLML may include customization of location, size, and appearance of
controls. The controls in an OGLML application manipulate parameters stored in the data store.

• ogScript: ogScript provides a JavaScript engine to extend the capability of OGLML-based
applications. ogScript may also be used to access external data sources (either file or network-
based) as well as provide for custom interface to non-OGP devices.

Client Interface
The application is presented within the DashBoard client. DashBoard provides services to display the
application, interface with devices, and maintain the data store. DashBoard also provides mechanisms
for device discovery, logging, and alarms, and features an interactive GUI named PanelBuilder for the
creation of CustomPanel applications.

14 • ogScript Reference DashBoard CustomPanel Development Guide

openGear Protocol
openGear Protocol (OGP) is a basic communication protocol between DashBoard and devices. It
provides a mechanism to communicate the basic Data Model, manage parameter changes and describe a
basic user interface. With OGP, devices can present a rich user interface using a standardized layout.

There are several variants of OGP, the details of which are described in in openGear Development
Guide Part II - Software (8200DR-006), available to registered openGear partners. The knowledge of
the details of the protocol mechanics is not required to develop applications within DashBoard; OGP is
simply a mechanism which communicates the Data Model between devices and DashBoard.

Resource XML File
The structure of a device’s parameters and menus may be expressed in XML format. This file can be
generated in DashBoard from an existing device by right-clicking the device and selecting “Save
Configuration to file”. This will generate a “.ogd” file containing the XML representation of the
device.

A resource XML file is also generated by PanelBuilder, if “External Data Source Panel File” is selected
when creating the CustomPanel. This file will be given the extension .xml.

It is also possible to declare resources directly within an OGLML document using the Resource XML
syntax.

openGear Layout Markup Language (OGLML)
OGLML is an XML layout language which augments OGP by providing a set of tools to customize the
layout and behaviour of a user interface presented in DashBoard. An OGLML document also allows
controls from multiple devices to be combined into a single user interface, called CustomPanels.
CustomPanels may be designed interactively using DashBoard’s internal PanelBuilder feature.
PanelBuilder provides a GUI to customize the user interface, and generates an OGLML document.

When a new CustomPanel file is created within DashBoard’s PanelBuilder, an OGLML file with an
extension .grid is created.

OGLML is strictly a layout tool for tailoring the presentation of a device’s user interface within
DashBoard. It simply specifies how a devices’ resources are displayed, and relies upon resources in the
data store to provide the values for the content. The data store must be backed by a data source, through
one of the mechanisms discussed above.

ogScript
ogScript is a programming language developed to interact with DashBoard-enabled devices. It uses
JavaScript functions, syntax, and primitive object types. To enable CustomPanel developers to interact
with panels and devices, ogScript adds some new global objects to JavaScript. Most JavaScript works in
ogScript scripts, although you might run across an occasional item that does not work.

ogScript may be embedded into an OGLML document to add additional functionality based on a set of
trigger events (for example, when a page loads, when a parameter changes, mouse clicks, etc.). There
are a number of API definitions to allow control of DashBoard’s features, access to the data store, and
connect to external devices and data sources.

Getting Started

Building a CustomPanel Application
There are several steps in creating a CustomPanel application. The easiest way to get started is to
interactively design a layout with DashBoard’s PanelBuilder. The basic steps involved are:

• Define data sources
• Define local parameters

DashBoard CustomPanel Development Guide ogScript Reference • 15

• Add controls to the layout in PanelBuilder
• Edit OGLML file for fine-tuning
• Add ogScript to the CustomPanel for advanced functionality

PanelBuilder is an interactive tool that allows quick and easy layout of control; its output is an OGLML
document (with a .grid extension).

Refer to DashBoard User Guide help topic or the DashBoard User Guide (8351DR-004) PDF for
detailed instructions on building CustomPanels in PanelBuilder.

16 • ogScript Reference DashBoard CustomPanel Development Guide

DashBoard Data Model

In This Section
This section describes the underlying data model for openGear and DashBoard Connect devices.

This section includes the following topics:

• Device Data Model
• Customizing Menus Using Display Hints
• Data Types
• External Data Objects
• OGLML Documents
• Custom Widgets
• Custom APIs Within CustomPanels

Device Data Model
This section includes the following topics:

• Data Object Hierarchy
• Device / Card
• Parameters
• Constraints
• Parameter Structure Objects
• Parameter References
• Menus

Data Object Hierarchy
DashBoard stores a device’s data representation in an object hierarchy.

DashBoard CustomPanel Development Guide ogScript Reference • 17

Figure 2 - Data Object Hierarchy in DashBoard

This hierarchy is explicitly exposed in the XML representation. OGP does not explicitly reference the
data through the object hierarchy, but individual data elements may be accessed via their OIDs.

Device / Card
All information regarding a device is encapsulated within the device object. This is encapsulated with a
<card> tag in the XML representation. Each node in the DashBoard tree is treated as an independent
device object. The device object contains a list of parameters and menu-groups.

Each device node in the DashBoard tree has a unique node-id. This node-id is used by DashBoard to
reference parameters from multiple devices within the same client interface. The node-id can be
determined by selecting the node in the DashBoard tree and selecting “View Connection Information”
from the context menu.

18 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 3 - Connection Information

Parameters
The configuration and state of any device can be represented by a list of parameters holding information
about the device, including:

• identification: device type and supplier name, software revision, etc.
• status: alarms, voltage, current, temperature, input signal presence and format, etc.
• configuration: user-specified setup parameters (gain, delay, output video format, etc.)

Each parameter is identified with an Object Identifier (OID), and consists of two parts: the descriptor
and the value. The descriptor defines the structure of the data, and the value is the content, which is
dependent on the descriptor. The descriptor may also specify a constraint, which limits the value to a
certain set of valid values.

Object Identifiers (OIDs)
Each parameter is identified by a unique object ID (OID). There are 2 types of OIDs supported: numeric
and string. All devices must support numeric OIDs, and may optionally support string OIDs. However,
use of meaningful string OIDs is strongly recommended for new designs, as it clarifies code and
simplifies the development of CustomPanels. Handling of Numeric and String OID parameters utilize
different message types. Devices implementing String OIDs must support both message types.

Numeric OIDs
Numeric OIDs are 2-byte integers and referenced in this document as a 16-bit hex value, for example:
0x0105. In JSON messaging, numeric OIDs are encoded as strings. For example, the OID 0x0105 is
encoded as the string "0x105".

String OIDs
String OIDs allow text-based parameter identifiers, and must follow the following encoding rules:

• Must not contain spaces
• May only contain the following characters: a-z A-Z 0-9 .(dot) _ (underscore)
• Are case sensitive
• There is no set limit to the String OID identifier length; however, string OIDs over 255 characters

cannot be carried over CAN or TCP/IP binary protocol.

A string OID identifier should not be confused with the parameter name. A string ID is the variable
name, the Parameter Name is the display name for the parameter. For example a parameter may have
the OID “mle.2.keyer.3.ckey-state” and the parameter name could be “Chroma Key”. Software refers to
the value “mle.2.keyer.3.ckey-state”, but the default label on the DashBoard GUI would be “Chroma
Key”.

DashBoard CustomPanel Development Guide ogScript Reference • 19

Descriptors
Parameters are defined using a descriptor containing its name, data type, data length, constraint (set of
permitted values) and other information. When DashBoard first contacts a device, it requests the list of
parameters for that device, and the descriptor for each parameter. This information is used to create an
appropriate user interface for the device and to properly interpret and display parameter values reported
by the device.

In JSON messaging, descriptor objects are identified by the naming convention _d_oid.

The descriptor for each parameter contains the following fields:

Field Description
oid Object Identifier for this Parameter
version Version of the descriptor
name Parameter name to be displayed in a user interface
data type Data type (integer, float, string, or array thereof)
data size Nominal size of the data field
access Read/write access indicator
precision Precision to displayed for printed numbers
widget Graphical display hint for this parameter
constraint An object specifying the set of permitted values for the parameter

Version
The current version is 2. Permitted versions are 0, 1 and 2. Versions 0 and 1 are identical to version 2,
except that widget hints are ignored.

Name
This field provides the parameter name to be displayed in DashBoard. The name does not need to be
unique. It may be ignored by some software (e.g. the SNMP agent).

Data Type and Size
Data type indicates the storage type for the parameter value.

Access
This field indicates whether the parameter can be modified. This enables the control software to display
an appropriate control for read-only values, or to disallow edits. In OGP, the supported values are:

Access Value Description
ACCESS_READWRITE 0x01 Parameter may be modified by the control client
ACCESS_READONLY 0x00 Parameter is read-only, and may not be set by the client

Precision
When used with numbers — this field defines the number of digits following the decimal point
displayed for printed numbers. It applies mainly to floating point numbers.

When used with string arrays —this field defines the maximum number of bytes reserved for a single
element in the array. If it is 0, no limit is set for each element, and the maximum number of bytes in a
parameter value is shared arbitrarily amongst all elements in the array.

Constraint
Constraints allow data to be limited to a certain range or certain values.

Widget Hint
The widget hint specifies the type of graphical control that should be used to display this parameter. To
ensure backward compatibility with DashBoard 1.0, widget hints are ignored if the version field is less

20 • ogScript Reference DashBoard CustomPanel Development Guide

than 2.

Constraints
Constraints are an important part of the parameter descriptor. It specifies a legal range of values which
the value of the parameter may take. Certain constraints also impact how the parameter is displayed
within DashBoard. Certain widgets require specific constraints, while others may behave in different
manners depending upon the constraint applied to the parameter. For array parameters, the same
constraint applies to each element of the array.

Constraints are specified through a numeric identifier called ctype. The supported constraint types are:

Constraint Name ctype Param Types Description
NULL_CONSTRAINT 0 All Parameter is unconstrained.
RANGE_CONSTRAINT 1 INT16_PARAM

INT32_PARAM
INT16_ARRAY
INT32_ARRAY
FLOAT_PARAM
FLOAT_ARRAY

Parameter is bounded by a
min-max range. Display
min-max range may be
different from the value
range.

CHOICE_CONSTRAINT 2 INT16_PARAM
INT16_ARRAY

Parameter must be selected
from a set (enumeration) of
name-value pairs (up to 255
choices)

EXTENDED_CHOICE 3 INT16_PARAM
INT16_ARRAY

Parameter must be selected
from a set (enumeration) of
name-value pairs (more
than 255 choices)

STRING_CHOICE 4 STRING_PARAM
STRING_ARRAY

Provides a set of available
choices. Parameter may be
selected from this set, but
arbitrary values are also
permitted.

RANGE_STEP_CONSTRAINT 5 INT16_PARAM
INT32_PARAM
INT16_ARRAY
INT32_ARRAY
FLOAT_PARAM
FLOAT_ARRAY

Parameter is bounded by a
min-max range. Step size
indicates the amount to
increment/decrement the
value each time it is
changed.

ALARM_TABLE 10 INT16_PARAM
INT32_PARAM
INT16_ARRAY

Each bit in the parameter is
a status flag, so param can
display 16 or 32 concurrent
named error conditions.

EXTERNAL_CONSTRAINT 11 All Indicates that the constraint
is encoded in an external
object, rather than encoded
within the descriptor.

Constraints are normally embedded within the parameter descriptor however; they may also be encoded
separately as external objects (which allow longer choice lists, etc.).

A detailed definition of each constraint type, and rules for encoding each constraint, are provided below.

Note: The constraint is considered to be a contract for the parameter. DashBoard will not
attempt to set a parameter to a value that violates the constraint. Similarly, the device
must ensure that the value reported for each parameter complies with the constraint.
Behavior of some control software may be unpredictable if the reported value violates
the constraint.

DashBoard CustomPanel Development Guide ogScript Reference • 21

Unconstrained
To leave a parameter unconstrained, use the NULL_CONTRAINT constraint. Any parameter which
does not have any other constraint applied must specify the NULL_CONSTRAINT.

Range Constraints
To constrain a numerical parameter to a specific range of values, the RANGE_CONSTRAINT or
RANGE_STEP_CONSTRIANT must be specified. Both constraint types allow a minimum and
maximum parameter value (minValue, maxValue). Additionally, an optional display minimum and
maximum value (minDisp, maxDisp) may also be specified. This allows the display range to map to
normalized parameter range. The value to be displayed is determined by the following linear mapping:

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)×(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

Note that minDisp and maxDisp must be the same data type as the parameter. For example, to display
the value of a 12-bit register (0-4095) as a percentage, set

• (minValue, maxValue) = (0, 4095)
• (minDisp, maxDisp) = (0, 100)

The difference between RANGE_CONSTRAINT and RANGE_STEP_CONSTRAINT is the latter also
allows a step size to be specified. The step is specified in the same data type as the parameter and is the
minimum change increment on the parameter value (not necessarily the display value).

Note It is strongly recommended that the range (maxValue – minValue) be evenly divisible by
the provided step size. Otherwise, when starting from the minimum, the parameter will
use values of minValue + n * stepSize and when starting from the maximum, the
parameter will use values of maxValue – n * stepSize.

Range constraints applied to an array parameter apply to all members of the array.

Choice Constraints
Choice constraints allow a parameter to provide a list of choices. CHOICE_CONSTRAINT and
EXTENDED_CHOICE constraints provide a mechanism to create a set of enumerated values for an
INT16 or INT32 parameter. This allows integer types to be limited to a specific set of valid values, as
well as providing a mechanism to provide text choices in the DashBoard UI for these parameters.

STRING_CHOICE constraint provides a set of default values which may be populated in a
STRING_PARAM, however unlike CHOICE_CONSTRAINT and EXTENDED_CHOICE, it does
not limit the user to only these values, any value may be used in the string.

Alarms
Assigning an ALARM_TABLE constraint to an integer parameter tells DashBoard to treat the integer as
an array of alarms. When alarms are set, they will impact the overall status reporting of the device.

External Constraints
An EXTERNAL_CONSTRAINT is used to indicate that the constraint for this parameter is provided in
an external object, rather than embedded within the parameter descriptor.

This constraint simply provides a reference to the external object, encoded as shown in the following
table.

Parameter Structure Objects
Parameter structure objects, or structs, are user-defined structures defined within parameters. They are
defined by encoding a struct descriptor within the value object of a parameter. This is done by inserting
an array of sub-OID descriptors (param objects) into the value field of a parameter. Structs must have

22 • ogScript Reference DashBoard CustomPanel Development Guide

their type set to STRUCT or STRUCT-ARRAY.

A parameter may inherit the struct descriptor from another parameter through use of a STRUCT
constraint which specifies a templateoid. The templateoid specifies the OID of a parameter whose
descriptor will be inherited, thus eliminating the need to define identical struct descriptor for each
instance of a struct parameter.

Parameter References
Sub-params within a structure may also be defined as references to other parameters. These behave
much like C++ or Java variable references. A parameter reference inherits the referenced parameter’s
type, attributes and constraints.

Menus
How a device is displayed in DashBoard is determined by the menu data provided by the device.
DashBoard provides two methods for a device to specify menu layout and structure:

• Default openGear layout
• openGear Layout Markup Language (OGLML)

Default Menu Layout
The default menu layout is designed to make it very simple for devices to display a menu structure.
Each menu comprises a name and a list of object identifiers specifying the parameters to be displayed in
the menu. Menus are organized into groups, where each group comprises a name and an array of menus.

DashBoard CustomPanel Development Guide ogScript Reference • 23

Menus are divided into menu groups. The default layout displays only 2 groups:

• Group 0: Status (read-only)
• Group 1: Configuration

Below is an example of the default layout:

 Figure 4 - Menu Layout

Each product may define any number of menus and groups; however, the DashBoard control system
recognizes two groups in the default UI layout: group 0 = status parameters (read only), and group 1 =
configuration parameters. Other menu groups are not displayed in the default UI layout presented by
DashBoard, but may be used in OGLML UI layouts

OGLML Menu Layout
Advanced menu layouts are available with openGear Layout Markup Language (OGLML). OGLML
documents can replace an individual menu or the entire device configuration in DashBoard

Menu Group 0 Menu Group 1

Menu Tabs Menu Tabs

Parameters

24 • ogScript Reference DashBoard CustomPanel Development Guide

Customizing Menus Using Display Hints
The descriptor for each parameter includes a widget hint to allow the device designer to specify the type
of control to be used to display the parameter. The hints available depend on the parameter type, the
constraint type, and the values in the constraint for each parameter. This allows the designer to
customize the menu for each device.

DashBoard 1.0 ignored widget hints and provided a default control based on parameter and constraint
type. For backwards compatibility, DashBoard 2.0 (and later) ignores widget hints for parameters with
the version field set to 0 or 1, providing the same default behavior as DashBoard 1.0. To use widget
hints, it is necessary to set the version field within the parameter to 2.

When a read-only parameter provides a widget hint, a read-only version of the parameter’s preferred
widget is used. The exceptions are WIDGET_DEFAULT (displays like DashBoard 1.0) and Alarm
Tables (display the alarm). Hints for status menu parameters are overridden for correct display in that
space.

Universal Hints
The following widget hints may be used for any parameter type:

Widget Name Value Description
WIDGET_DEFAULT 0 DashBoard will choose what it thinks is the best widget

to use for the parameter type and constraint (makes the
parameter work like it does with DashBoard 1.0).

WIDGET_TEXT_DISPLAY 1 shows a read-only version of the parameter value (uses
same widget that is shown when WIDGET_DEFAULT
parameter is set to read-only).

WIDGET_HIDDEN 2 still uses space on the menu page and shows the label
for the parameter but show a blank area on the menu
page where the widget would be.

WIDGET_LABEL 100 Displays the value of the parameter as a read-only label

Separators, Titles and Layout Hints
The following hints are used with string parameters to provide separators, titles, and extended layout
options for menus. Parameters using these widget hints are treated as read only and constant – they do
not update live on the screen. Examples of each hint are shown below.

Widget Name Value Description
WIDGET_TITLE_LINE 5 displays the value of the String parameter as a label

with all other parameter labels and a line across the
content area of the menu page.

WIDGET_LINE_ONLY 6 displays a line across the content area of the menu
page with no label on the left.

WIDGET_TITLE_ONLY 7 displays the value of the String parameter as a label
with empty space in the content area of the menu page.

WIDGET_PAGE_TAB 8 creates a 3rd-level tab within the menu page. The value
of the parameter is used as the tab label.

WIDGET_TITLE_HEADER 10 displays a title over the content area of the menu with
the value of the parameter used as the header text.

DashBoard CustomPanel Development Guide ogScript Reference • 25

WIDGET_TITLE_LINE (5)
This displays the value of the String parameter as a label aligned with all other parameter labels, and a
line across the content area of the menu page. The name of the parameter is ignored.

Figure 5 - WIDGET_TITLE_LINE hint.

WIDGET_LINE_ONLY (6)
This displays a line across the content area of the menu page with no label on the left. The name and
value of the parameter are ignored.

Figure 6 - WIDGET_LINE_ONLY hint.

WIDGET_TITLE_ONLY (7)
This displays the value of the String parameter as a label with empty space in the content area of the
menu page. The name of the parameter is ignored.

Figure 7 - WIDGET_TITLE_ONLY hint

WIDGET_PAGE_TAB (8)
Whenever a new String parameter with a WIDGET_PAGE_TAB hint is found on a menu page, a new
3rd-level tab is created inside of that menu page. The label on that tab will be the value of the String
parameter. All parameters listed after each WIDGET_PAGE_TAB String parameters (until the next
such parameter) are placed on a menu page inside of that 3rd-level tab.

Figure 8 - A menu with WIDGET_PAGE_TAB hints.

Note Whenever WIDGET_PAGE_TAB hints are used on a menu, the first OID in the menu
should be for a String parameter with a widget hint defining the first tab’s label.

26 • ogScript Reference DashBoard CustomPanel Development Guide

WIDGET_TITLE_HEADER (10)
Displays a title over the content area of the menu with the value of the parameter used as the header
text. No label is shown on the left and the name of the parameter is ignored.

Figure 9 - WIDGET_TITLE_HEADER hint.

Array Layout Hints
By default, all array parameters are displayed horizontally across a menu page. Adjacent OIDs of the
same size will format in DashBoard in a tabular format. For example, 3 array parameters with 4
elements each, the layout would appear as:

Figure 10 - Default array layout.

Column headers can be added by adding a read-only INT16_ARRAY parameter to the menu
immediately before the other arrays (widget hint WIDGET_ARRAY_HEADER_HORIZONTAL). The
parameter is expected to have a choice constraint. The string values of the elements of this parameter
provide the column headers. The resulting display is:

Figure 11 - WIDGET_ARRAY_HEADER_HORIZONTAL hint.

Array elements can also be given a vertical layout. Changing the widget hint for the header array to
WIDGET_ARRAY_HEADER_VERTICAL provides the following layout:

Figure 12 - WIDGET_ARRAY_HEADER_VERTICAL hint.

DashBoard CustomPanel Development Guide ogScript Reference • 27

Array layout can be specified by including a read-only INT16_ARRAY parameter as a header, with one
of the following widget hints:

Widget Name Value Description
WIDGET_ARRAY_HEADER_VERTICAL 15 indicates that the associated array

parameter and all subsequent
parameters should be displayed in a
vertical layout

WIDGET_ARRAY_HEADER_HORIZONTAL 16 indicates that the associated array
parameter and all subsequent
parameters should be displayed in a
horizontal layout

Normally sequential array OIDs will be formatted as a single table. If it is desired to break a block of
sequential array OIDs into multiple tables, it is necessary to insert a non-array OID, or switch from a
horizontal layout hint to a vertical layout hint (or vice versa). If multiple arrays of different size are
encoded with different sizes, the layout may be unpredictable.

WIDGET_ARRAY_HEADER_VERTICAL (15)
This hint indicates that the associated array parameter and subsequent parameters should be displayed in
a vertical layout. The elements of the parameter will be used as row labels for display. The names of the
following arrays are used as column labels. The header should be a read-only INT16_ARRAY
parameter with a choice constraint to allow meaningful text labels. The elements of each array are
displayed as specified by the widget hint for that array.

The vertical array layout will be applied until another WIDGET_ARRAY_HEADER_VERTICAL
starts a new set of vertical columns, a WIDGET_ARRAY_HEADER_HORIZONTAL declares that
subsequent arrays should be laid out horizontally, a non-array element in found on the page, or the end
of the menu page is reached.

Figure 13 shows an INT16_ARRAY parameter named "Channel", provides a vertical layout and row
labels for 7 array parameters named “Channel Update”, “Source”, “Vertical Channel”, “Delay Array
(ms)”, “Gain (dB)”, “Invert”, and “Destination”.

Figure 13 - INT6_ARRAY vertical layout example.

WIDGET_ARRAY_HEADER_HORIZONTAL (16)
The WIDGET_ARRAY_HEADER_HORIZONTAL is used to create a header over a horizontal array.
It will also will end a block of vertical array elements. Each element in the header parameter will be
displayed as a column header.

Figure 14 shows an INT16_ARRAY parameter named "Channel" providing a horizontal layout and

28 • ogScript Reference DashBoard CustomPanel Development Guide

column labels for 7 array parameters named “Horizontal Channel”, “Source”, “Delay Array (ms)”,
“Gain (dB)”, “Invert”, “Destination” and “Transition”.

Figure 14 - INT16_ARRAY horizontal layout example.

INT16/INT32 Parameters with Choice Constraints
The following hints apply to INT16, INT16_ARRAY, INT32, and INT32_ARRAY Parameters
provided that they use a constraint of type CHOICE or EXTENDED_CHOICE. There are some
restrictions for certain hints (checkboxes and toggle buttons are only valid for 2-choice constraints,
buttons with and without prompts are only valid for single-choice and 2-choice constraints). If a widget
hint is used incorrectly, the combo box will be substituted in place of the chosen widget. Display
examples are provided below.

Widget Name Value Description
WIDGET_COMBO_BOX 7 Displays a dropdown list of selectable options. This is

the default widget used for any choice parameter
with more than 1 choice provided.

WIDGET_CHECKBOX 8 Displays a checkbox. Checkboxes only apply to
parameters with exactly 2 choices. The first choice is
considered false or unchecked; the second choice is
considered true or checked.

WIDGET_RADIO_HORIZONTAL 9 Displays a radio button for each integer value option.
The radio buttons are placed beside each other
horizontally on the page.

WIDGET_RADIO_VERTICAL 10 Displays a radio button for each integer value option.
The radio buttons are placed in a vertical column.

WIDGET_BUTTON_PROMPT 11 Provides a button with confirmation prompt.
Whenever the button is pressed and confirmed, the
parameter value is sent to the device.

WIDGET_BUTTON_NO_PROMPT 12 Provides a button without confirmation prompt.
Whenever the button is pressed, the parameter value
is sent to the device.

WIDGET_BUTTON_TOGGLE 13 Displays a toggle buttons. This hint applies only to
parameters with exactly 2 choices. The first choice is
shown when the button is up (not pressed);
the second choice is shown when the button is down
(pressed).

WIDGET_FILE_DOWNLOAD 18 Displays a file download widget. This hint requires an
external object with an OID matching the value of the
parameter.

WIDGET_MENU_POPUP 20 Each value in the parameter must refer to the menu
ID of an OGP Menu. The choice corresponding to the
parameter value has its name used as the value
displayed on a button. When the button is pressed,
the menu with an OID corresponding to the

DashBoard CustomPanel Development Guide ogScript Reference • 29

Widget Name Value Description
parameter value is displayed in a popup menu.

WIDGET_RADIO_TOGGLE_BUTTONS 22 Displays a toggle button for each integer value
option. The toggle buttons are placed beside each
other horizontally on the page.

WIDGET_TREE 31 Displays a tree control. Tree elements are defined by
the elements of the choice constraint. The tree
hierarchy is defined by “-” characters at the
beginning of the choice. See detailed description
below for more information.

WIDGET_TREE_POPUP 32 Displays the tree (same definition as
WIDGET_TREE) in a combo box control. See
detailed description below for more information.

WIDGET_COMBO_BOX (7)
Display a dropdown list of selectable options. This is the default widget used for any choice parameter
with more than 1 choice provided.

Figure 15 - WIDGET_COMBO hint

WIDGET_CHECKBOX (8)
Displays a checkbox. Checkboxes only apply to integer choice constraints with exactly 2 choices.
The first choice is considered false or unchecked; the second choice is considered true or checked.

Figure 16 - WIDGET_CHECKBOX hint.

30 • ogScript Reference DashBoard CustomPanel Development Guide

WIDGET_RADIO_HORIZONTAL (9)
Displays a radio button for each element in the choice constraint. The radio buttons are placed beside
each other horizontally on the page.

Figure 17 - WIDGET_RADIO_HORIZONTAL hint

WIDGET_RADIO_VERTICAL (10)
Displays a radio button for each element in the choice constraint. The radio buttons are placed in a
column vertically on the page.

Figure 18 - WIDGET_RADIO_VERTICAL hint

WIDGET_BUTTON_NO_PROMPT (12)
This hint can only be used for a parameter having a choice constraint with one or two choices. It
displays a button with the name of the first choice as the button label. When the button is pressed, a
parameter set request is sent to the device immediately (without user confirmation). If the parameter has
only one choice, the value of that choice is sent to the device. If the parameter has two choices, the
value of the second choice is sent. The device should normally reset the parameter value to the first
choice when it acknowledges the set request.

Figure 19 shows a single-choice parameter named "Factory Defaults" with a hint of
WIDGET_BUTTON_NO_PROMPT and a value of "Reset". There will be no confirmation dialog.

Figure 19 - WIDGET_BUTTON_NO_PROMPT hint.

WIDGET_BUTTON_PROMPT (11)
This hint can only be used for a parameter having a choice constraint with one or two choices. It is the
default widget used when only one choice is available. It displays a button with the name of the first
choice as the button label. When the button is pressed, a confirmation dialog is displayed before sending
anything to the device. The dialog uses the format: “[Button Label] [Parameter Name]?” So a choice
called “Reset” with a parameter named “Parameter Values” would display “Reset Parameter Values?”
as the prompt. When the button is pressed and confirmed, a parameter set request is sent to the device. If
the parameter has only one choice, the value of that choice is sent to the device. If the parameter has two
choices, the value of the second choice is sent. The device should normally reset the parameter value to
the first choice when it acknowledges the set request. If a two-state button is desired, see
WIDGET_BUTTON_TOGGLE (13) on page 31.

Figure 20 shows single-choice parameter named "Factory Defaults" with a hint of
WIDGET_BUTTON_PROMPT and a value of "Reset".

DashBoard CustomPanel Development Guide ogScript Reference • 31

Figure 20 - WIDGET_BUTTON_PROMPT hint

Note Two choices are necessary for using WIDGET_BUTTON_PROMPT and
WIDGET_BUTTON_NO_PROMPT with array parameters.

WIDGET_BUTTON_TOGGLE (13)
Toggle buttons work exactly the same as a checkbox. The toggle button applies only to integer
constraints with exactly two choices. The name of the first choice is shown when the button is up (not
pressed) and the name of the second choice is shown when the button is down (pressed).

Figure 21 shows a two-choice integer parameter named "Bold Toggler" with choice 1 set to "First
Value" and choice 2 set to "Second value" The figure shows the button’s display for both before and
after a button toggle.

Figure 21 - WIDGET_BUTTON_TOGGLE hint

Properties

Property Type Default Description
w.instantoff Boolean false Parameter's value is changed to the "on"

state when the button is clicked, and back
to the "off" state as soon the mouse is
released. The button is only "on" while it is
depressed.

WIDGET_FILE_DOWNLOAD (18)
This hint requires that an external object with an OID matching the value of the parameter be available.
For each choice in the parameter’s choice constraint, the choice value represents an external object’s
OID and the value represents the filename to display. When the ‘save’ button is pressed, DashBoard
requests the external object with the given OID and save the external object’s bytes to the
filename/location defined by the user (default filename is defined in the choice constraint).

32 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 22 - WIDGET_FILE_DOWNLOAD hint

WIDGET_MENU_POPUP (20)
This hint requires that an OID Menu with a menu ID matching the value of the parameter be available.
For each choice in the parameter’s choice constraint, the choice value represents a menu’s ID and the
choice name represents the label to display on the button. When the button is pressed, DashBoard
displays the menu with the given ID as a popup menu.

Figure 23 - WIDGET_MENU_POPUP hint

DashBoard CustomPanel Development Guide ogScript Reference • 33

WIDGET_RADIO_TOGGLE_BUTTONS (22)
Displays a radio toggle button for each integer value option. The radio toggle buttons are placed beside
each other horizontally on the page.

Figure 24 - WIDGET_RADIO_TOGGLE_BUTTONS hint

WIDGET_TREE (31)
Displays a tree control. Tree elements are defined by the elements of the choice constraint. The tree
hierarchy is defined by “-” characters at the beginning of the choice. When an element in the tree is
selected, the parameter value is set to the value of the selected choice. All other expand/collapse
changes are local only to the DashBoard on which the change occurred.

“+” indicates that an element should be expanded by default.

Figure 25 - WIDGET_TREE hint

The tree pictured above is defined by the following list of choices:

1. Element 1<i:>
2. +Element 1 - 1<i-u:http://127.0.0.1/icons/small/sound2.png>
3. +Element 1 - 2<i:>
4. +-Element 1 - 2 - 1<i:>
5. +-Element 1 - 2 - 2<i:>
6. +-Element 1 - 2 - 3<i:>
7. Element 2
8. +-Element 2 - 1
9. +-Element 2 - 2
10. +-Element 2 - 2 - 1
11. +-Element 2 - 2 - 2
12. +-Element 2 - 2 - 3
13. +--Bob!
14. Element 3
15. Element 4

WIDGET_TREE_POPUP (32)
Displays the tree (same definition as WIDGET_TREE) in a combo box control. This functions the same
as WIDGET_TREE, with the difference that only the currently selected item shows by default. When

34 • ogScript Reference DashBoard CustomPanel Development Guide

the user clicks on the value, a popup appears, allowing selection to be made.

Figure 26 - WIDGET_TREE_POPUP hint

Hints for Numeric Parameters with Other Constraints
The following hints are for INT16, INT16_ARRAY, INT32, INT32_ARRAY, FLOAT, and
FLOAT_ARRAY parameters and arrays with constraints other than choices. Most hints have specific
restrictions. Details for each hint are provided below.

Widget Name Value Description
WIDGET_SLIDER_HORIZONTAL 3 Displays a horizontal slider control. This is the

default control for range-bounded integer and
floating point parameters when they are not
used in an array

WIDGET_SLIDER_VERTICAL 4 Displays a vertical slider control. This is the
default control for range-bounded integer and
floating point array parameters

WIDGET_SPINNER 5 Displays a spinner (entry field plus up/down
arrows). This is the default for unbounded INT16
parameters. This cannot be used for unbounded
FLOAT or INT32 parameters.

WIDGET_TEXTBOX 6 Displays a numeric entry field. This is the default
for unbounded FLOAT and INT32 parameters.

WIDGET_IP_ADDRESS 14 Displays an IP Address entry field.
Only works with unconstrained INT32
parameters.

WIDGET_PROGRESS_BAR 17 Displays a read-only progress bar control.
WIDGET_AUDIO_METER 19 Displays a read-only audio level meter control

with green, yellow, and red markers.
WIDGET_TIMER 21 Displays a label that counts down from the

parameter value to 0 when double-clicked.
WIDGET_COLOR_CHOOSER 23 Put a colour chooser as an element in the UI.

Changes made to the colour chooser are
instantly sent to the device.
Color values are INT32 values in ARGB format.

WIDGET_SLIDER_HORIZONTAL_NO_LABEL 24 Displays a horizontal slider control with no label
WIDGET_SLIDER_VERTICAL_NO_LABEL 25 Displays a vertical slider control with no label
WIDGET_VERTICAL_FADER 26 Displays a vertical slider that looks like a fader

bar
WIDGET_TOUCH_WHEEL 27 Displays a touch wheel control
WIDGET_HEX_SPINNER 28 Displays a spinner (entry field plus up/down

arrows). Display the value in Base 16.

DashBoard CustomPanel Development Guide ogScript Reference • 35

Widget Name Value Description
WIDGET_ABSOLUTE_POSITIONER 29 Provides a 2-axis absolute positioning element.

When used as an INT16, the 8 LSBs represent
the X coordinate and the 8 MSBs represent the
Y coordinate. When used as an INT32, the 16
LSBs represent the X coordinate and the 16
MSBs represent the Y coordinate.
A crosshair in a box can be dragged to the
absolute position of the value in 2-D space.

WIDGET_ABSOLUTE_CROSSHAIR 30 Position a value in 2-D space. When used as an
INT16, the 8 LSBs represent the X coordinate
and the 8 MSBs represent the Y coordinate.
When used as an INT32, the 16 LSBs represent
the X coordinate and the 16 MSBs represent the
Y coordinate.
A crosshair that snaps to the center when
released makes changes in +/- X, +/- Y relative
to the offset from the center.

WIDGET_JOY_STICK 34 Position a value in 2-D space. When used as an
INT16, the 8 LSBs represent the X coordinate
and the 8 MSBs represent the Y coordinate.
When used as an INT32, the 16 LSBs represent
the X coordinate and the 16 MSBs represent the
Y coordinate.
Displays a joystick and modifies the X, Y values
as the joystick is dragged north, south, east, and
west of the center.

WIDGET_COLOR_CHOOSER_POPUP 33 Display a combo box control showing the
‘current’ colour. On click, show the colour
chooser. If “Live” is togged on, update the
parameter value immediately. If “Live” is toggled
off, update the parameter value when the popup
is closed.
Color values are INT32 values in ARGB format.

WIDGET_GRAPH 256 Displays a plot graph of a parameter’s value
over time.

WIDGET_EQ_GRAPH 46 Displays an EQ Graph that provides a visual
representation of how bands effect frequencies
across a given range.

WIDGET_SLIDER_HORIZONTAL (3)
Horizontal sliders are the default widgets used for range-bounded integer and floating point numbers
when they are not used in an array. Sliders are not available for unbounded (null constraint) parameters.

Figure 27 shows an integer parameter with a range constraint bounded by (0, 200) and a
WIDGET_SLIDER_HORIZONTAL hint.

Figure 27 - WIDGET_SLIDER_HORIZONTAL hint

WIDGET_SLIDER_VERTICAL (4)
Vertical sliders are the default widgets used for range-bounded integer and floating point numbers when
they are used in an array. Sliders are not available for unbounded (null constraint) parameters.

The following is an integer parameter with a range constraint bounded by (0, 994) and a
WIDGET_SLIDER_VERTICAL hint.

36 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 28 - WIDGET_SLIDER_VERTICAL hint

WIDGET_SLIDER_HORIZONTAL_NO_LABEL (24)

Figure 29 - WIDGET_SLIDER_HORIZONTAL_NO_LABEL hint

WIDGET_SLIDER_VERTICAL_NO_LABEL (25)

Figure 30 - WIDGET_SLIDER_HORIZONTAL_NO_LABEL hint

WIDGET_VERTICAL_FADER (26)
This hint specifies that the number shall be displayed as a vertical fader bar. The user can adjust the
level by dragging the handle of the fader up or down.

Figure 31 - WIDGET_VERTICAL_FADER hint

WIDGET_TOUCH_WHEEL (27)
This hint specifies that the number shall be displayed as a touch wheel (or circular slider). The user
grabs the dot on the circle and drags clockwise to increment the value and counter clockwise to
decrement it. The touch wheel can be configured to take a specified number of revolutions to go from
the minimum value to the maximum value and can also be configured to roll over to the minimum or
maximum when the limits of the range are reached.

DashBoard CustomPanel Development Guide ogScript Reference • 37

Figure 32 - WIDGET_TOUCH_WHEEL hint

WIDGET_PROGRESS_BAR (17)
This hint specifies that the number shall be displayed as a horizontal progress bar. For a range-bounded
parameter, the progress bar displays the specified range (similar to a slider). For an unbounded
parameter, the progress bar displays from 0 to 100%.

Figure 33 - WIDGET_PROGRESS_BAR hint

WIDGET_SPINNER (5)
Spinner widgets provide a compact way to navigate a bounded integer or float parameter. Spinner
widgets are the default widgets used for unbounded int16 parameters. The spinner widget cannot be
used with an unbounded floating point or int32 parameter.

Figure 34 - WIDGET_SPINNER hint

Notes The range of the parameter: abs(max – min) x precision cannot exceed the maximum
size of a signed integer for sliders and spinners.

To aid in touch screen environments, clicking and dragging a spinner up/down will
increase/decrease its value.

Properties

Property Type Default Description
w.keyboard Integer disabled – Disables the soft keyboard or

number pad to enter characters when
using a touchscreen.

WIDGET_TEXTBOX (6)
This hint specifies that a simple text entry field should be used for a number. The information entered
into the text field is forced to conform to the constraints provided by the parameter. This is the default
widget used for unbounded floating point parameters.

Figure 35 - WIDGET_TEXTBOX hint

WIDGET_IP_ADDRESS (14)
Displays an IPv4 Address format for a 32-bit integer. Only works with unbounded INT32 parameters.

38 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 36 - WIDGET_IP_ADDRESS hint

WIDGET_AUDIO_METER (19)
This hint specifies that the number shall be displayed as a vertical audio meter. The number of
red/yellow/green segments is fixed.

Figure 37 - WIDGET_AUDIO_METER hint

WIDGET_TIMER (21)
This hint applies only to integer parameters with RANGE_STEP_CONSTRAINT constraints. The
parameter is displayed as a label and counts down if minVal < 0 or up if minVal >= 0. Negative
numbers are not displayed. The step size is used to specify the number of ticks-per-second to use and
must be a number between 1 and 1000.

When the maximum or minimum values are reached, the timer will stop counting.

To initialize the counter to a specific value but not have it start counting:
• If the minimum value is negative and the parameter value is positive, the timer will display

absolute(min) –value but will not count.
• If the minimum value is positive and the parameter value is negative, the timer will display

absolute(value) but will not count.

DashBoard CustomPanel Development Guide ogScript Reference • 39

The timer can be reset or synchronized by sending a REPORT_PARAM message with the new
parameter value (typically “1”).

Examples:
• min=-600, max=0, step=1 (count from 10:00 to 0:00 showing each second).
• min=0, max=600, step=1 (count from 0:00 to 10:00 showing each second)
• min=0, max=1000,step=1000 (count from 0:00:000 to 0:01:000 showing each millisecond)

Figure 29 shows an INT_32 parameter with a WIDGET_TIMER hint, a precision of 1000, and a value
of 13794088.

Figure 38 - WIDGET_TIMER hint

WIDGET_HEX_SPINNER (28)
Displays a spinner (entry field plus up/down arrows). Display the value in Base 16.

Figure 39 - WIDGET_HEX_SPINNER hint

Notes Due to the lack of unsigned data types in OGP, hex spinners do not function properly in
the following circumstances:
- An INT16 parameter with any values in the range of 0x8000 – 0xFFFF
- An INT32 parameter with any values in the range of 0x80000000 – 0xFFFFFFFF
- To allow a spinner to function in the range from 0x0000 – 0xFFFF, it is recommended
that an INT32 parameter be used.

WIDGET_ABSOLUTE_POSITIONER (29)

Position a value in 2-D space.
• When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y

coordinate.
• When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y

coordinate.

A crosshair in a box is dragged to the absolute position of the value in 2-D space. The ratio of width to
height is the ratio of xmax-xmin to ymax-ymin with the assumption that the screen pixels are square.
Values are updated and sent to the device as the crosshair is dragged.

Figure 40 - WIDGET_ABSOLUTE_POSITIONER hint

WIDGET_CROSSHAIR (30)

Position a value in 2-D space.
• When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y

coordinate.
• When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y

coordinate.

40 • ogScript Reference DashBoard CustomPanel Development Guide

A crosshair that snaps to the center when released makes changes in +/- X, +/- Y relative to the offset
from the center. The ratio of width to height is the ratio of xmax-xmin to ymax-ymin. Values are
updated and sent to the device as the crosshair is dragged.

Figure 41 - WIDGET_CROSSHAIR hint

WIDGET_JOY_STICK(34)

Position a value in 2-D space.
• When used as an INT16, the 8 LSBs represent the X coordinate and the 8 MSBs represent the Y

coordinate.
• When used as an INT32, the 16 LSBs represent the X coordinate and the 16 MSBs represent the Y

coordinate.

Displays a joystick and modifies the X,Y values as the joystick is dragged north, south, east, and west of
the center.

Figure 42 - WIDGET_JOY_STICK hint

WIDGET_COLOR_CHOOSER(23)
Display a color chooser as an element in the UI. Changes made to the color chooser are immediately
sent to the device. Note that the color chooser provides control for Hue, Saturation, Lightness, but color
values are INT32 values in ARGB format.

Figure 43 - WIDGET_COLOR_CHOOSER hint

WIDGET_COLOR_CHOOSER_POPUP(33)
Display a combo box control showing the ‘current’ color. On click, show the color chooser.

• If “Live” is togged on, update the parameter value immediately.
• If “Live” is toggled off, update the parameter value when the popup is closed.

DashBoard CustomPanel Development Guide ogScript Reference • 41

Color values are INT32 values in ARGB format.

Figure 44 - WIDGET_COLOR_CHOOSER hint

42 • ogScript Reference DashBoard CustomPanel Development Guide

WIDGET_GRAPH (256)
The graph widget provides a plot graph which tracks the value of a numeric parameter over time.

Figure 45 - WIDGET_GRAPH hint

A parameter utilizing a WIDGET_GRAPH widget may also specify additional configuration parameters
in the config object of the parameter.

Properties

Property Type Default Description
w.time Integer Sets the timescale of the plot. If set to 0,

the timescale will adapt to display entire
change history.

w.grid String Sets the color of the gridlines

w.plotfg String Sets the color of the plot foreground

w.plotbg String Sets the color of the plot background

w.hidelegend Boolean true – Legend is not shown
false – Legend is shown

w.hidex Boolean true – X-axis scale is not shown
false – X-axis scale is shown

w.hidey Boolean true – Y-axis scale is not shown
false – Y-axis scale is shown

w.autoadvance Booelan true – graph will auto-update every 1
second
false – graph will only update upon
parameter change.

WIDGET_EQ_GRAPH (46)
 The EQ graph widget provides a a visual representation of how bands effect frequencies across a given
range. This advanced widget allows you to make an EQ graph, using parameters from any device that
talks to DashBoard. The EQ graph creates a graphical representation of parametric equalization. For

DashBoard CustomPanel Development Guide ogScript Reference • 43

example, you can add a Ross Video Carbonite switcher to DashBoard as a device, and then measure
bands from the Carbonite’s parameters. The graphic below shows an EQ graph that is pulling
parameters from a Carbonite switcher, and the equalizer settings have been mapped to slider controls to
make adjustments from the DashBoard CustomPanel.

Each band has an associated frequency, range, and Q value, if required.

The filter that each band is applying can be specified in the configuration overrides. If the filter is not
defined, then it will default to a peak filter.

Figure 46 - WIDGET_EQ_GRAPH hint

A parameter utilizing a WIDGET_EQ_GRAPH widget must also specify additional configuration
parameters in the config object of the parameter. For more details see the DashBoard User Guide.

Properties

Property Type Default Description
w.linecolor #[RGB Value] Sets the color of the graph point to point

line.

w.filters [String Array] Sets the filter for each band, where the
possible values are lowshelf, peak or
highshelf. One filter per point.

w. pointnames [String Array] Sets the name on each graph point, for
example:

w.colorselected #[RGB Value
Array]

 1, 2, 3, 4

w.colorunselected #[RGB Value
Array]

 Sets the color for each point when it’s
selected. For example:

w.linethickness [Integer] #ffd966,#c27ba0,#6d9eeb,#93c47d

w.graphfontsize [Integer] Sets the color for each point when it’s not
selected. For example:

w.pointfontsize [Integer] #ffd966,#c27ba0,#6d9eeb,#93c47d

w.pointwidth [Integer] Sets the thickness of the graph point to
point line.

w.pointheight [Integer] Sets the font size of the text used on the
graph title, axis labels and axis entries.

w.xaxis [String] Sets the font size for the point names.

w.yaxis [String] Sets the width of the points.

w.xaxisentries [String Array] Sets the height of the points.

44 • ogScript Reference DashBoard CustomPanel Development Guide

Property Type Default Description
w.yaxisentries [String Array] Sets the x axis label.

w.pointamount [Integer] Sets the y axis label.

w.frequencyshift [Integer] Sets the line marks on the x axis. For
example:
20,50,100,200,500,1000,2000,5000,10000

w.title [String] Sets the line marks on the y axis. For
example:

Hints for String Parameters
The following widget hints may be used for String parameters (in addition to the separators and layout
hints defined above). The last two hints apply only to a String parameter using the reserved objectID
0xFF01.

Widget Name Value Description
WIDGET_TEXT_ENTRY 3 Displays a normal text entry field. This is the

default for editable String parameters.

WIDGET_PASSWORD 4 Displays an entry field for passwords (text
entered in this field is obscured).

WIDGET_COMBO_ENTRY 11 Displays an entry field together with a
dropdown list of selectable items. This is
applicable only with the STRING_CHOICE
constraint.

WIDGET_COLORED_DOT 12 Displays a colored icon. The icon color is
specified using a tag in the text string.

WIDGET_RICH_LABEL 13 Displays a read-only multi-line text field with
HTML formatting.

WIDGET_MULTILINE_TEXT_ENTRY 14 Displays a multi-line text editor.

WIDGET_NAME_OVERRIDE_APPEND 0 Special hint only for objectID 0xFF01 –
causes this string to be appended to the
displayed product name

WIDGET_NAME_OVERRIDE_REPLACE 1 Special hint only for objectID 0xFF01 –
causes this string to replace the product
name to be displayed

WIDGET_TEXT_ENTRY (3)
This is a text entry field used to enter String values. This is the default widget used with editable String
parameters. It is very important to correctly set the length of the String with this widget as the length
affects the width of the text field. In DashBoard the value is sent to the device when the user hits ‘Enter’
or changes focus to a different control on the screen.

Figure 47 - WIDGET_TEXT_ENTRY hint

Properties

DashBoard CustomPanel Development Guide ogScript Reference • 45

Property Type Default Description
w.keyboard Integer disabled – Disables the soft keyboard or

number pad to enter characters when
using a touchscreen.

WIDGET_PASSWORD (4)
This is a text entry field used to enter passwords. When the device receives a set message for a
parameter using this hint, a device could send an empty string back to the device to clear the password
field. Text in the password field is sent when it has changed from the value reported from the device and
the user hits “Enter” or moves focus to another control.

Figure 48 - WIDGET_PASSWORD hint

46 • ogScript Reference DashBoard CustomPanel Development Guide

WIDGET_COMBO_ENTRY (11)
This displays a text entry field along with a dropdown list. This option is available only for String
parameters having a STRING_CHOICE constraint. The user may select an option from the dropdown
list, or can type any value in the entry field. The text is sent to the device when a dropdown item is
selected, when the user presses “Enter” or moves the focus after typing a value.

Figure 49 - WIDGET_COMBO_ENTRY hint, selecting from the dropdown list

WIDGET_COLORED_DOT (12)
This displays a colored icon. This should not be confused with Alarm parameters which have a similar
appearance. The tag specifies the 24-bit RGB color index of the icon in hex, in the format
<#RRGGBB>. If the string does not contain a valid color tag, the icon is drawn but not filled (i.e.
background shows through).

Figure 50 - WIDGET_ICON_DISPLAY hint, and value “<#3F3FFF>”

WIDGET_RICH_LABEL (13)
This displays a read-only multi-line text field, and formats the text according to the HTML formatting
tags embedded in the text. Total string length including tags is limited to 250 bytes. The display uses
html support within the java display object, so the exact appearance of the label may vary depending on
operating system and java version.

Figure 51 - WIDGET_RICH_LABEL hint

WIDGET_MULTILINE_TEXT_ENTRY (14)
This displays a multi-line text entry field. The amount of data a user can input into the field is limited by
the maximum length specified by the parameter. The size of the field is the same regardless of the
maximum number of bytes the user is allowed to enter. If the parameter’s value spans more lines than
the number of rows represented by the text field, a vertical scrollbar is shown to allow the user to scroll.
Text will be wrapped to avoid horizontal scrollbars.

DashBoard CustomPanel Development Guide ogScript Reference • 47

Figure 52 - WIDGET_MULTILINE_TEXT_ENTRY hint

WIDGET_NAME_OVERRIDE_APPEND (0)
This is a special hint ONLY FOR OID 255.1 (0xFF01). This causes the value of the String parameter
with OID 255.1 to be appended to the end of the device name in DashBoard.

Figure 53 shows the result of setting parameter 255.1 to " (XPF)" with a
WIDGET_NAME_OVERRIDE_APPEND hint.

Figure 53 - WIDGET_NAME_OVERRIDE_APPEND hint

WIDGET_NAME_OVERRIDE_REPLACE (1)
This is a special hint ONLY FOR OID 255.1 (0xFF01). This causes the value of the String parameter
with OID 255.1 to be displayed as the device name instead of the product name (OID 0x0105) in
DashBoard. This is the only supported method for changing a product name dynamically. Devices
should never modify their base product name (OID 0x0105); DashBoard, DataSafe, and User Rights all
depend on the base product name remaining fixed. Change of the product name is assumed to mean that
the user has physically removed a card, and has replaced it with a different type of card.

Figure 54 shows the result of setting parameter 255.1 to "My Device Name" with a
WIDGET_NAME_OVERRIDE_REPLACE hint.

Figure 54 - WIDGET_NAME_OVERRIDE_REPLACE hint

48 • ogScript Reference DashBoard CustomPanel Development Guide

Hints for STRUCT Types
Struct parameters may utilize the following widget types:

WIDGET_TABLE (36)
The table widget displays a line for each element in a STRUCT_ARRAY. Column headings are
specified by the name property of each struct element. Each element of the struct is given a column in
the table.

Figure 55 - WIDGET_TABLE hint

A parameter using a WIDGET_TABLE widget may also specify additional configuration parameters in
the config object of the parameter.

DashBoard CustomPanel Development Guide ogScript Reference • 49

Properties

Property Type Default Description
w.localselection Boolean false true – edits in the table row do not

update backing parameter; changes in the
backing parameter do not update the
selected row(s).
false – backing parameter and table row
changes track with each other.

w.scrollselection Boolean true true – auto scroll to the selected row
false – do not scroll to the selected row

w.reorder Boolean false true – allow drag to reorder values
false – do not allow drag to reorder
values

w.rowstyleparam String none OID of string array parameter providing
style information (background, foreground,
font, font size, etc.) for each row.

w.selectionparam String none OID of integer parameter that will be
populated with the index of a selected row.

w.rowaccessparam String none OID of integer array parameter which
determines read-only access for each row.
(0 = read-only, 1 = read-write). If not
specified, all rows are read-write.

w.rowheight Number automatic Sets the row height. Specified in pixels

w.colwidth.n Number automatic Sets the width of the nth column. First column
index is 0.

w.colminwidth.n Number automatic Sets the minimum width of the nth column.
First column index is 0.

w.hscroll Boolean false true – show horizontal scrollbar
false – do not show horizontal scrollbar

w.alwaysscroll Boolean false true – vertical scrollbar always shown
false – vertical scrollbar only shown only
when required

w.hgrid Boolean true true – display horizontal grid lines
false – do not display horizontal grid
lines

w.vgrid Boolean true true – display vertical grid lines
false – do not display vertical grid lines

50 • ogScript Reference DashBoard CustomPanel Development Guide

Data Types
OGP supports a number of parameter data types as summarized in the table below. For OGP messaging,
the OGP Type value is a numerical index to indicate the parameter’s data type. For JSON messaging,
the Data Type Name is used to indicate the parameter type.

Data Type Name OGP
type

Data Size
(bytes)

Description

INT16 2 2 16-bit signed integer (INT16)
INT32 4 4 32-bit signed integer (INT32)
FLOAT32 6 4 32-bit IEEE single-precision floating point number
STRING 7 variable null-terminated UTF-8 string

data_size = maximum permitted number of
character data bytes

INT16_ARRAY 12 2 * len array of 16-bit integers
data_size = 2 * number of elements
(total length of the array in bytes)

INT32_ARRAY 14 4 * len array of 32-bit integers
data_size = 4 * number of elements
(total length of the array in bytes)

FLOAT32_ARRAY 16 4 * len array of 32-bit floats
data_size = 4 * number of elements
(total length of the array in bytes)

STRING_ARRAY 17 variable null-terminated UTF-8 strings
precision = maximum string length for any element
in the array
data_size = maximum number of character data
bytes

STRUCT n/a variable User-defined data structure. (DashBoard 7.0+)
STRUCT_ARRAY n/a variable Array of User-defined data structures. (DashBoard

7.0+)
BINARY_PARAM 18 variable array of binary data of type unknown to

DashBoard.

Endianness
All numeric data encoding within OGP is in Big Endian format. Therefore, highest order bytes of multi-
byte numeric values are transmitted first.

Number Encoding
Signed integer data types are binary encoded 2’s complement numbers. Valid ranges for integer types
are:

Response Min Max
UINT8 0 255
UINT16 0 65535
INT16 -32,768 32,767
INT32 -2,147,483,648 2,147,483,647

Floating point data types are encoded as 32-bit IEEE (single-precision) floating point numbers. This
encoding is broken down as:
• Sign: 1 bit
• Exponent: 8 bits; Range -126 to +127

DashBoard CustomPanel Development Guide ogScript Reference • 51

• Base: 23 bits
• Data size is the number of bytes occupied by the value.

String Encoding
All string data encoding within OGP is in UTF-8 format. Strings are preceded by a length count byte,
and are followed by a null terminating byte.

External Data Objects
To support more complex interaction with the device than is possible with parameters, DashBoard
includes a set of general data objects called External Objects. Each object is identified by a 2-byte
objectID (like parameters), and contains a type identifier and object-specific data. External object OIDs
can overlap with parameter OIDs. The range of OIDs from 0xFE00 to 0xFFFF is reserved for future
use.

External objects include an object type to indicate the type of data they encapsulate. The supported
object types are:

objtype Description
1 Constraint
2 Data File
3 Image
4 OGLML or XML document
5 File

Constraint
Parameter constraint information can be taken outside of the parameter descriptor and moved into an
external object. This is useful, for example if there is a choice constraint with a large number of options,
or a common constraint is to be applied to multiple parameters. The constraint field in the parameter
descriptor simply refers to an external object ID.

Any constraint type can be externalized except the external constraint type itself. An external constraint
object can be shared by multiple parameters (the external object will be requested only once for all
parameters which share the constraint). The object type of the external constraint must be 1, and the
object data must be encoded in the same format as used for an embedded constraint.

An external object that is not object type 0x0001 will be treated as a NULL constraint (unconstrained).
Just like constraints declared in the parameter descriptor, external constraints must have the same data
type as the referring parameter.

Data File
Arbitrary binary data can be sent from the device to DashBoard as a file download. These files are
requested by supplying an integer parameter with a WIDGET_FILE_DOWNLOAD widget hint and a
choice constraint. The numeric value of the parameter must match the OID of an external object
containing the file data to download. The string value of the choice constraint is used to supply a file
name for the download. To upload the file data back to the device, the data must use the standard
openGear file header information defined in the section.

Image
Images may be encapsulated within an External Object to be displayed in the device editor (via
OGLML) or to be used to override its icon in DashBoard. The icon may include a status indicator or
DashBoard can overlay a status indicator over the provided icon. Icons can be provided either by a URL

52 • ogScript Reference DashBoard CustomPanel Development Guide

or embedded directly in the external object.

Images must be formatted as JPEG, GIF, or PNG. Icons must be 16x16.

OGLML Descriptor or Index XML
DashBoard includes powerful feature for defining the on-screen layout of a device’s configuration page
in DashBoard. These configurations are defined in an OGLML Document. These documents can be
retrieved from a web server or sent to DashBoard in an external object.

File
OGLML or image assets may be directly embedded into CustomPanels using an External Object. To
directly embed graphics into a CustomPanel, you can use the attributes encoding and zip.

This object type can also be used to reference a non-embedded asset via the URL attribute when using
an OGLML tag.

OGLML Documents
This section includes the following topics:

• Containers

• Contexts

• OGLML Document Structure

• OGLML URLs

• OGLML Descriptor Format

Containers
All UI elements must be placed within a container. The container dictates how UI components are laid
out within the DashBoard UI. There are several container types which provide different options on
component layout. Layout containers may be nested.

By default, PanelBuilder will create a top-level abs container, and all elements (including nested
containers) are placed within this top-level container.

Contexts
Contexts define scope within an OGLML document. PanelBuilder creates OGLML documents with a
default context named “opengear”. If multiple devices are linked to an OGLML document, each
device has its own separate context. Therefore, elements defined within the context of one device are
not visible within another device’s context.

OGLML Document Structure
The basic structure of the OGLML document is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<abs contexttype="opengear">
 <api>
 Global code
 </api>
 <meta>
 Non-UI Tags here

DashBoard CustomPanel Development Guide ogScript Reference • 53

 <api>
 Global ogScript code
 </api>
 <params>
 Parameter declarations
 </params>
 <menus>
 Menu declarations
 </menus>
 <widgets>
 Widget descriptors
 </widgets>
 </meta>
 <ui container>
 <ui elements/>
 <ui element>
 Local scope ogScript code
 </ui element>
 <nested ui container>
 <ui element/>
 . . .
 </nested ui containter>
 . . .
 </ui container>
 . . .
</abs>

Details about the individual tags are documented in the section OGLML Reference.

OGLML URLs

An OGLML URL can be a standard URL or an external object reference. The fragment (“#name”) of
the URL can optionally provide the ID of a child element inside of the OGLML document to reference.
An external object reference URL has the form “eo://0x1234” where 0x1234 is the external object ID of
the external object containing the OGLML descriptor.

OGLML URL examples:
• http://myhost/mydocument.xml

(include the entire document at the given URL)
• https://10.0.100.1/document.xml#myid

(include the element with id=”myid” from the given URL)
• eo://0xAB12

(load the OGLML descriptor from the external object with ID 0xAB12)
• eo://0xAB12#my-other-id

(load the OGLML descriptor from the external object with ID 0xAB12 and select sub-element with
id=”my-other-id”)

OGLML Descriptor Format
The first byte of an OGLML Descriptor defines the type of information to follow.

No OGLML Descriptor (0x00)

http://myhost/mydocument.xml
https://10.0.100.1/document.xml#myid

54 • ogScript Reference DashBoard CustomPanel Development Guide

This is used when there is no OGLML document referenced by this descriptor.

Field length Description
desctype 1 (uint8) 0x00
content 0 No content is provided in this case

Descriptor provided by external object (0x01)
This is used when the descriptor is contained in an external object.

Field length Description
desctype 1 (uint8) 0x01
content 2

(uint16)
The external object ID of the object containing the OGLML Descriptor

OGLML Document provided by URL (0x02)
The OGLML document is hosted on a web server. The descriptor provides the URL of the OGLML
Document.

Field length Description
desctype 1 (uint8) 0x02
urllen 1 (uint8) The length of the URL to follow including the null terminator
url urllen The null-terminated URL of the external object. This must begin with

“http://” or “https://”. The content on the webserver can be
uncompressed or follow web conventions for zip or deflate compression.

file:// URLs may also be used but this should generally only be for
development purposes and not actually on a released device.

Descriptor provides the OGLML Document in-line (0x03)
The OGLML File document immediately follows the descriptor type field.

Field length Description
desctype 1 (uint8) 0x03
content * OGLML XML File Content

Descriptor provides a GZipped OGLML Document in-line (0x04)
The OGLML document is provided immediately following the descriptor type field (document is
compressed in GZip format).

Field length Description
desctype 1 (uint8) 0x04
content * GZipped OGLML XML File Content

Descriptor provides a Deflate OGLML Document in-line (0x05)
The OGLML document is provided immediately following the descriptor type field (document is
compressed in Deflate format).

Field length Description
desctype 1 (uint8) 0x05
content * Deflate OGLML XML File Content

Custom Widgets
Custom widgets are user-defined controls within a DashBoard editor. These allow device designers and

DashBoard CustomPanel Development Guide ogScript Reference • 55

CustomPanel developers to reuse repeated elements within an OGLML document. Complex UI
behaviour can be coded into the widget, which is hidden from the UI developer.

Custom Widgets allow the designer to design an element consisting of multiple controls, OGLML
markup tags and ogScript. This element can then be instantiated multiple times within an OGLML
document. Widgets may be defined within an OGLML document or made globally available in
DashBoard.

Widgets allow configuration parameters exposed to tailor the look, feel and behaviour. These
configuration parameters are also available through the PanelBuilder GUI, allowing simple
customization of the widget.

Widgets are defined by creating a Widget Descriptor, which consists of a section OGLML/ogScript
code that defines the controls. Additionally, a configuration block may be defined which creates a
configuration page for the widget within PanelBuilder.

Creating Widgets

Widget Descriptor Structure
The widget descriptor has a structure as outlined below:
<widgetdescriptor id="widget-id">
 <config>
 <params>
 Configuration parameters here
 </params>
 <oglml>
 Optional OGLML markup for configuration editor
 </oglml>
 </config>
 <oglml>
 <meta>
 <params>

 Private parameter declarations
 </params>
 <api>
 Private ogScript functions
 </api>

 <meta>
 <layout-container>
 UI elements
 </layout-container>
 </oglml>
</widgetdescriptor>

OGLML Block
The OGLML section (encapsulated within an <oglml> tag) contains the OGLML document to create
the widget. It may contain <meta>, <ogscript>, <api> and layout container tags in the same
manner as a standard OGLML document. Note that all declarations within the <oglml> section are
private to the widget.

Config Block
The config section (encapsulated within a <config> tag) contains OGLML document that creates a
configuration page for the widget. The configuration page is displayed within the Edit Component

56 • ogScript Reference DashBoard CustomPanel Development Guide

dialog in PanelBuilder. By default, the default openGear layout will be used to present any parameters
declared within a <params> tag in the config block:

 <widgetdescriptor id="alarmgrid">
 <config>
 <params>
 <param access="1" name="String 1" oid="str1" type="STRING"
value="First"/>

 <param access="1" name="String 2" oid="str2" type="STRING"
value="Second"/>

 <param access="1" name="String 3" oid="str3" type="STRING"
value="Third"/>

 <param access="1" name="String 4" oid="str4" type="STRING"
value="Fourth"/>

 <param access="1" name="String 5" oid="str5" type="STRING"
value="Fifth"/>

 <param access="1" name="String 6" oid="str6" type="STRING"
value="Sixth"/>

 </params>
 </config>
 <oglml>
 <simplegrid cols="3" rows="2">
 <param height="40" oid="str1" widget="12" width="200"/>
 <param height="40" oid="str2" widget="12" width="200"/>
 <param height="40" oid="str3" widget="12" width="200"/>
 <param height="40" oid="str4" widget="12" width="200"/>
 <param height="40" oid="str5" widget="12" width="200"/>
 <param height="40" oid="str6" widget="12" width="200"/>
 </simplegrid>
 </oglml>
 </widgetdescriptor>

Figure 56 – Widget Configuration (Default Layout)

However, OGLML markup may be added by specifying it within an <oglml> block within the config
block.

Note If an <oglml> block is specified within the <config> section, only parameters included
in the <oglml> block will be displayed in the PanelBuilder “Edit Component” dialog.

The following is an example of a widget descriptor incorporating an OGLML configuration markup. In
the example, a <simplegrid> container is used to arrange configuration parameters into a 3x2 grid.

DashBoard CustomPanel Development Guide ogScript Reference • 57

 <widgetdescriptor id="alarmgrid-oglml">

 <config>

 <params>

 <param access="1" name="String 1" oid="str1" type="STRING"
value="First"/>

 <param access="1" name="String 2" oid="str2" type="STRING"
value="Second"/>

 <param access="1" name="String 3" oid="str3" type="STRING"
value="Third"/>

 <param access="1" name="String 4" oid="str4" type="STRING"
value="Fourth"/>

 <param access="1" name="String 5" oid="str5" type="STRING"
value="Fifth"/>

 <param access="1" name="String 6" oid="str6" type="STRING"
value="Sixth"/>

 </params>

 </config>

 <oglml>

 <simplegrid cols="3" rows="2">

 <param height="40" oid="str1" widget="12" width="200"/>

 <param height="40" oid="str2" widget="12" width="200"/>

 <param height="40" oid="str3" widget="12" width="200"/>

 <param height="40" oid="str4" widget="12" width="200"/>

 <param height="40" oid="str5" widget="12" width="200"/>

 <param height="40" oid="str6" widget="12" width="200"/>

 </simplegrid>

 </oglml>

 </widgetdescriptor>

Figure 57 – Widget Configuration (OGLML layout)

If the widget descriptor includes a structtype attribute, PanelBuilder will use this as a filter to only offer
the widget for insertion if a struct parameter exists with matching structtype attribute.

Widget Samples

Numeric Keypad
This example creates a reusable control which presents a numeric keypad. The keypad accepts
parameters to map it to a specific OID to update, as well as name and a default value.

58 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 58 - Keypad Custom Widget

The widget also defines a custom configuration panel, which is presented within PanelBuilder’s “Edit
Component” dialog.

Figure 59 - Keypad Config Dialog

The widget descriptor to generate this widget is shown below. Comments have been added before
various sections of the code to identify their functionality.

The config block defines four parameters:
• Ext.Punch.Name – OID whose value the punchpad will manipulate
• Ext.Punch.DisplayName – Name to display in the title bar of the widget
• Ext.Punch.Default – Value to set if the DFLT button is pressed
• Ext.Punch.DefaultEnabled – Enables/Disables the DFLT button

There is an oglml block within the config section to specify the layout of the configuration
parameters in the Edit Component dialog.

This widget implements an ogScript function, addDigit(), to update the param value as the user
types in the keypad.

The oglml section lays out the keypad using a table container, and hooks the addDigit() function to
the buttonpress handler for each digit button.
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<widgets>
 <widgetdescriptor id="com.rossvideo.widget.punchpad v3"

icon="com.rossvideo.punchpad.png" inheritsrc="true" name="Punchpad
v3">

<!--Configuration section starts here-->

 <config>
 <!-- Variables that appear in the edit mode for the grid file and
that are part of the declaration for the widget -->

<!--Config parameter declarations start here-->

DashBoard CustomPanel Development Guide ogScript Reference • 59

 <params>
 <param access="1" maxlength="0" name="OID To use"
oid="Ext.Punch.Name"

type="STRING" value="OID not specified" widget="0"/>
 <param access="1" maxlength="0" name="OID To use"

oid="Ext.Punch.DisplayName" type="STRING"
value="name not specified" widget="0"/>

 <param access="1" constrainttype="INT_NULL"
name="Ext.Punch.Default"

oid="Ext.Punch.Default" precision="0" strvalue="0"
type="INT16"

value="0" widget="0"/>
 <param access="1" constrainttype="INT_CHOICE" name="Default
Enabled"

oid="Ext.Punch.DefaultEnabled" precision="0" strvalue="On"
type="INT16" value="1" widget="8">

 <constraint key="0">Off</constraint>
 <constraint key="1">On</constraint>
 </param>
 </params>
 <!-- Definition for the UI that appears in edit mode -->

<!--Config parameter layout starts here-->
 <oglml>
 <abs height="500" left="0" top="272" width="334">
 <table height="150" left="0" top="0" width="800">
 <tr>
 <label anchor="east" fill="none" insets="0,0,0,5"

name="OID To Use" weightx="0.0"/>
 <param anchor="west" element="0" fill="both"

oid="Ext.Punch.Name" showlabel="false"
weightx="1.0" weighty="1.0"/>

 </tr>
 <tr>
 <label anchor="east" fill="none" insets="0,0,0,5"

name="Title" weightx="0.0"/>
 <param anchor="west" element="0" fill="both"

oid="Ext.Punch.DisplayName" showlabel="false"
weightx="1.0" weighty="1.0"/>

 </tr>
 <tr>
 <label anchor="east" fill="none" insets="0,0,0,5"

name="Default Value" weightx="0.0"/>
 <param anchor="west" element="0" fill="both"

oid="Ext.Punch.Default" showlabel="false"
weightx="1.0"

weighty="1.0"/>
 </tr>
 <tr>
 <label anchor="east" fill="none" insets="0,0,0,5"

name="Default Value Enabled" weightx="0.0"/>
 <param anchor="west" element="0" fill="both"

oid="Ext.Punch.DefaultEnabled" showlabel="false"
weightx="1.0" weighty="1.0"/>

60 • ogScript Reference DashBoard CustomPanel Development Guide

 </tr>
 </table>
 </abs>
 </oglml>
 </config>

<!-- Definition for the widget UI itself -->

 <oglml>

 <!-- Temporary internal variables to the widget -->

<!--Local parameter declarations start here-->
 <params>
 <param access="1" maxlength="0" name="Punch.Temp.Number"

oid="Punch.Temp.Number" type="STRING" value="" widget="0"/>
 </params>

 <!-- Global functions for the widget to use -->
 <api id="addDigit" name="addDigit">

function addDigit(digit)
 {
 var value=params.getValue('Punch.Temp.Number',0);
 var i;
 if (digit=='-')
 {
 if (value[0] != '-')
 value = '-' + value;
 else
 value = value.substring(1);
 }
 else if (digit == '.')
 {
 // is there a '.' already?
 for (i=0;i<value.length;i++)
 {
 if (value[i]=='.')
 return;
 }
 value +='.';
 }
 else if (value[0] != '0')
 value += digit;
 else // first digit is a 0
 value = digit;
 params.setValue('Punch.Temp.Number',0,value);
 }

</api>

 <style id="TextStyle" name="TextStyle"

value="size:20;font:bold;bg#000000;fg#FFFFFF;"/>
 <abs height="317" left="641" style="bdr:etched;" top="355"

virtualheight="317" virtualwidth="371" width="371">
 <abs left="147" top="174"/>

DashBoard CustomPanel Development Guide ogScript Reference • 61

<!--Title bar begins here-->
 <label height="23" id="Var.Name" left="25"

name="%value['Ext.Punch.DisplayName'][0]%"
style="size:16;font:bold;txt-align:west;" top="14"
width="105"/>

 <param expand="true" height="32" oid="Punch.Temp.Number"
right="20"

showlabel="false" top="10" width="200"/>

<!--Table starts here-->
<table bottom="10" left="20" right="20" top="49">

<!--Table row showing buttons 7, 8, 9, DFLT-->
 <tr>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="7" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('7');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="8" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('8');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="9" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('9');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="DFLT" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">
var enabled =

params.getValue('Ext.Punch.DefaultEnabled',0);
 var value =
params.getValue('Ext.Punch.Default',0);
 if (enabled == 0)
 return;
 params.setValue('Punch.Temp.Number', 0,

value.toString());
 </task>
 </button>
 </tr>

<!--Table row showing buttons 4, 5, 6, CLR-->
 <tr>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="4" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

62 • ogScript Reference DashBoard CustomPanel Development Guide

 <task tasktype="ogscript">addDigit('4');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="5" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('5');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="6" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('6');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="CLR" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task asktype="ogscript">
params.setValue('Punch.Temp.Number', 0, '0');

</task>
 </button>
 </tr>

<!--Table row showing buttons 1, 2, 3, Enter-->
<tr>

 <button buttontype="push" colspan="1" fill="both"
height="43"

name="1" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('1');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="2" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('2');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="3" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('3');;</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="ENTR" rowspan="2" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">
params.setValue('%value['Ext.Punch.Name'][0]%',0,

params.getValue('Punch.Temp.Number',0
));

 params.setValue('Punch.Temp.Number', 0, '0');

 </task>

DashBoard CustomPanel Development Guide ogScript Reference • 63

 </button>
 </tr>

<!--Table row showing buttons +/- 0-->
 <tr>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="+/-" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('-');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="0" rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('0');</task>
 </button>
 <button buttontype="push" colspan="1" fill="both"
height="43"

name="." rowspan="1" style="style:TextStyle;"
weightx="1.0" weighty="1.0" width="58">

 <task tasktype="ogscript">addDigit('.');</task>
 </button>
 </tr>
 </table>
 </abs>
 </oglml>
 </widgetdescriptor>
</widgets>

Descriptor Location
Descriptors may be defined within an OGLML document, stored in an external file, or retrieved directly
from a device.

Inline Widget Descriptors
Descriptors are defined within the <meta> block of an OGLML document. Descriptors may not be
nested within other widget descriptors. All widget descriptors must be placed within a <widgets>
block within the <meta> block.

External Widget Descriptor Files
The widget descriptor may be stored in an external file. External widget descriptor files have the
extension .widgetdescriptor.

DashBoard searches for widget descriptors in the following locations:
• Within a widgets subfolder within the folder containing the OGLML document.
• Within the widgets folder inside the DashBoard installation directory.
• A file specified by use of the baseurl attribute of a widgetdescriptor tag.

Device-served Widget Descriptors
A device may specify a URL to retrieve widgets using reserved OID 0xFF14. This mechanism will
retrieve a single file from the specified URL. This is the recommended approach for openGear device
developers.

64 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Mapping
Parameters declared within the config block are visible to the configuration editor and the widget itself.
External ogScript functions may access these parameters via the getConfigParams function of the
widget object.

Parameters declared within the oglml block are private to the widget, and not visible to the config block.

Global parameters are visible within the widget when referenced explicitly.

Widgets also support relative parameters. When a relative parameter is referenced, its name is
concatenated to the string specified in the baseOID attribute of the widget instance.

Parameters within a widget are interpreted as relative if one of the following conditions is met:
• the OID begins with a "."
• the parameter has the attribute relative set to true.
• the parameter reference explicitly specifies the baseOID by explicitly prefixing %baseoid% to the

OID of the parameter.

A parameter may force reference to a local parameter by prepending %widget% to the OID of the
referenced parameter.

Example
The widgetdescriptor keyer references the parameters .clip and .gain. Global parameters are
created called keyer1.clip, keyer1.gain, keyer2.clip and keyer2.gain. The widgets then may
be instantiated as:
<widget id="key1" widgetid="keyer" baseoid="keyer1"/>
<widget id="key2" widgetid="keyer" baseoid="keyer2"/>

The key1 widget’s parameters .clip and .gain are concatenated with the baseoid keyer1 thus
mapping them to the global parameters keyer1.clip, and keyer1.gain. In a similar manner, key2
widget’s parameters map to the global parameters keyer2.clip, and keyer2.gain.

The baseoid attribute may be queried and modified dynamically through the ogScript getBaseOID
and setBaseOID member functions of the widget object.

Using DashBoard Prebuilt Custom Widgets
DashBoard provides several prebuilt custom widgets that can be customized for use in your
CustomPanel. You can access these custom widgets from the Widget button on PanelBuilder Edit
Mode toolbar. Check if you can leverage one of the existing widgets, by referring to the list of widgets
below:

• ogScript Macro Group — This widget allows you to create scripts in the Visual Logic editor
and presents as either a list of buttons or a playlist.

• XPression Desktop Preview 1.0 — This widget allows you to preview XPression playlists
from a DashBoard CustomPanel.

• XPression CountDown 1.0 — This widget allows you to create an XPression Countdown
timer.

Simply follow the instructions below to add a custom widget to your DashBoard CustomPanel, and then
refer to the additional implementation steps for the widget of your choice.

To Add a Custom Widget in DashBoard
1. Open DashBoard and select PanelBuilder Edit Mode.

The Edit Mode toolbar appears.

DashBoard CustomPanel Development Guide ogScript Reference • 65

2. Click the Widget button and click and drag your mouse on the canvas to determine the area that
your widget will appear.

3. Select the widget of your choice from the list of widgets.

4. Click Ok and then refer to the additional instructions for that widget.

ogScript Macro Group Widget
This widget allows you to create scripts using the Visual Logic editor and can be displayed as either a
list, a playlist, or buttons. The display types are shown below:

List (Default) Playlist Buttons

Figure 60: Display Types

Important: Unalike most DashBoard components and Device UIs, you can only add scripts to this
widget when the panel is live. This is useful if you need to make live changes to scripts without
switching to PanelBuilder Edit Mode. When the panel is live, you can edit this widget directly by right-
clicking and selecting Edit.

The figure below illustrates the two areas that you must edit the widget:

66 • ogScript Reference DashBoard CustomPanel Development Guide

Live Panel:
This opens the Script/Trigger Editor.

Edit Mode:
This opens the Component Editor.

Figure 61: The live panel’s edit button is shown on the left and the panel in PanelBuilder Edit

Mode is shown on the right.

Additional resources can be found about Visual Logic in the DashBoard User Guide.

To Configure the ogScript Macro Group Widget
These instructions assume you have already added this widget to your DashBoard CustomPanel from
the Edit Mode toolbar under Widgets and are ready to configure it.

• For more details see, To Add a Custom Widget in DashBoard.

1. To change the display type, double-click on the widget to open the Component Editor.

From the Widget Attributes tab under Display Type, select Buttons, List (default), or Playlist
as your preferred display type and apply your changes.

2. To navigate to the live panel editor, on the top toolbar click PanelBuilder Edit Mode to exit
Edit Mode.

Tip: You can also press the keyboard shortkey to switch modes (CTRL + G).

If your canvas does not have grid marks, then you are in live mode.

To edit the live panel, right-click on the widget and click Edit.

DashBoard CustomPanel Development Guide ogScript Reference • 67

The Script/Trigger Information Editor opens.

Warning: Any changes you apply in this editor will occur immediately since the panel is live.

3. Once the Script/Trigger Information tab opens, enter the following:

• Name — Enter the script name.

• Trigger — Enter the trigger ID.

• Image — Select an image from the file browser. (optional)

• Background — Select a background color. (optional)

4. Open the ogScript Editor tab from the top menu, and create a script using the Visual Logic
blocks or ogScript palette.

5. Go back to the Script/Trigger Information tab and click Add Script to add the script you

created to the list on the right side.

6. Click Apply to apply your changes and then close the editor.

68 • ogScript Reference DashBoard CustomPanel Development Guide

7. To verify that your script works as intended click Run.

DashBoard CustomPanel Development Guide ogScript Reference • 69

XPression Desktop Preview 1.0
Setting up the XPression Desktop Preview in DashBoard

Before you begin, you must have already created your first DashBoard channel and completed the initial
configuration to allow streaming through a global style.

Note: XPression Version 10.0 or later is required.

To Configure the XPression Desktop Preview in DashBoard
These instructions assume you have already added this widget to your DashBoard CustomPanel from
the Edit Mode toolbar under Widgets and are ready to configure it.

• For more details see, To Add a Custom Widget in DashBoard.

1. To configure your XPression Desktop Preview Client, open XPression studio v.10.0 or later.

2. Click Edit from the top menu, select Hardware Setup.
The hardware Setup Dialog box opens.

3. To add a new desktop preview, select the Inputs/Outputs tab and click Add.

4. Select a new XPression Desktop Preview Client from the Add New FrameBuffer Board and
click OK. See the example below:

5. Set the Host Address to localhost, ensuring both DashBoard and XPression running on the
same system.

6. Select Channel 1 (the channel of the Desktop Preview Client) and click OK to ensure that the
channel option does not correlate with the Output Monitors channel. See the example below:

70 • ogScript Reference DashBoard CustomPanel Development Guide

7. To assign the Desktop Preview Client to a Preview Output Monitor, open the Preview

Monitors tab and select the Desktop Preview Client as the Up Next Preview Output.

Note: In the Sequencer Playlist left column, select Output Monitors to view the status the status
of the Desktop Preview Client. The status should show the status is not connected before the

widget is added to the DashBoard panel.
Now that you have successfully generated a preview for the focused items in XPression, you
can proceed to add the XPression Desktop Preview widget to your DashBoard CustomPanel.

DashBoard CustomPanel Development Guide ogScript Reference • 71

XPression CountDown 1.0
The XPression Countdown widget allows you to monitor a specific framebuffer and layer of XPression
to determine what take item is currently on that layer, and the amount of time left for that take item.

To Configure the XPression CountDown Widget
Before you begin, you must set up the CountDown Timer Broadcast on the XPression. Then you can
add the widget to your DashBoard CustomPanel.

Note: XPression Version 10.0 or later is required.

Set up the CountDown Timer Broadcast on the XPression

1. To configure your XPression to broadcast the countdown data, open XPression Studio v.10.0 or
later.

2. Click Edit from the top menu, select Hardware Setup.
The hardware Setup Dialog box opens.

3. To add a countdown timer broadcast, select the Timecode I/O tab and click Add.

4. Select the Countdown Timer Broadcast and fill in the appropriate Network Settings and Options.

Take note of the UDP Port because you need to enter the same port information in DashBoard
later.

72 • ogScript Reference DashBoard CustomPanel Development Guide

Click OK.

5. Verify that the state is Active.

Now that you have successfully broadcast the Countdown Timer from XPression, you can proceed to
add the XPression CountDown Timer widget to your DashBoard CustomPanel.

Add the Widget to the DashBoard CustomPanel

1. Open DashBoard and either create a CustomPanel or open an existing one. Select PanelBuilder
Edit Mode.
The Edit Mode toolbar appears.

2. Click the Widget button and click and drag your mouse on the CustomPanel canvas to determine
the area that your widget will appear.

3. Select the XPression CountDown widget.

DashBoard CustomPanel Development Guide ogScript Reference • 73

Click Ok.

4. After you have added the XPression CountDown 1.0 widget, double-click to open the Component
Editor. The Widget Attributes tab should display the options shown below:

Select from the following options:

• UDP Port — Enter the number of the port that XPression sends the take information to.

• Framebuffer — Enter the number of the framebuffer that you want to listen for.

• Layer — Enter the layer ID that you want to listen for.

• Show —Select Default Widget to display information for all fields or select an individual
field to display a single field.

• Individual Data Style — If you selected an individual field to be shown in the previous
option, then click Edit to select a style for that field. This config option does not apply to
the Default Widget option.

Apply your changes.

5. Verify that your widget displays the appropriate fields. If you decided to show only one individual
data field, then only a label will appear.

The example below displays the default widget (showing all available fields):

Tip: If the countdown timer data is not displayed, as shown below, go back to troubleshoot the
XPression CountDown Timer Broadcast and ensure that the XPression broadcast and the
DashBoard widget are set to use the same UDP port.

74 • ogScript Reference DashBoard CustomPanel Development Guide

DashBoard CustomPanel Development Guide ogScript Reference • 75

Custom APIs Within CustomPanels
You can use OGLML’s <api> tag to create a library of reusable ogScript code segments (APIs) within
a CustomPanel.

You can also save ogScript code segments as JavaScript files (.js), and reference them from within
<api> tags. This allows you to maintain an ogScript library that can be used by any of your
CustomPanels.

The <api> tag provides a location for global ogScript code. Contents of the <api> tag are processed by
the ogScript compiler directly. Elements within an <api> tag are scoped where they are declared in the
XML; siblings and children of siblings have visibility to elements declared within the <api> tag.

The <api> tag should generally be placed within a <meta> tag for global ogScript code encapsulation.
However, ogScript code intended to dynamically generate and modify the XML should be placed in a
top-level <api> tag.

Syntax
<api>

 global-scope elements

</api>

Attributes
None.

This section includes information about about how to use the <api> tag effectively. It contains the
following topics:

• Lexical Order and Loading Order
• Enabling Reuse by Keeping APIs in Separate Files
• Managing Scope

Lexical Order and Loading Order
<api> tags load in lexical order (the order in which they appear in the .grid file) unless the immediate
attribute is set to true . When multiple <api> tags are set to load immediately, they load in lexical
order relative to each other, but before any non-immediate <api> tags.

Interaction with On Load Handlers
DashBoard provides change handlers that are triggered by certain events. The loading of the panel is
one such event. These are also triggered in lexical order, so, if an onload handler needs to use code that
is defined in an <api> tag, one of these conditions must be met:

• The <api> tag being used by the onload handler must appear before the handler in the .grid file.
• The immediate="true" attribute of the <api> tag must be set, to load the API immediately.

Example to Demonstrate the Effects of Lexical Order and Loading Order
This section consists of a five-part example that illustrates the effects of lexical order and loading order.

Example – Part 1: Simple API Plus an onload Handler

The first part of the example has an <api> tag that defines a pretty printer function and prints the global
namespace to the debug pane.

The <api> tag is followed by an ogscript element that handles the onload event for the enclosing top-
level canvas.

76 • ogScript Reference DashBoard CustomPanel Development Guide

Here is the code:
<abs contexttype="opengear" id="main-abs">

<meta>

<api id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));

</api>

<ogscript handles="onload" id="main-abs-onload"

name="Main onload handler" targetid="main-abs">

ogscript.debug ('First onload handler');

</ogscript>

</meta>

</abs>

When the panel is loaded, the output appears as follows:
13:05:10:759: first api:

{}

13:05:10:759: First onload handler

Note that the global name space is reported as an empty object {} because,
although we defined the function pretty(), we didn't assign it to a var.

Also note that the onload prints out after the API. In the next example, the lexical order of the onload
handler and the <api> tag are reversed.

Example – Part 2: .grid File with <api/> Defined After <ogscript/> Element

In the second part of the example, the <api> tag appears after the ogScript onload handler:
<abs contexttype="opengear" id="main-abs">

<meta>

<ogscript handles="onload" id="main-abs-onload"

name="Main onload handler" targetid="main-abs">

ogscript.debug ('First onload handler');

</ogscript>

<api id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));

</api>

DashBoard CustomPanel Development Guide ogScript Reference • 77

</meta>

</abs>

When the panel is loaded, the output appears as follows:
13:11:35:480: First onload handler

13:11:35:491: first api:

{}

The output shows that the lexical order of onload handlers and APIs is significant.

The next part of the example adds another <api> tag to the CustomPanel, to put an object into the
global namespace.

Example – Part 3: Putting an Object in the Global Namespace

The third part of the example is the same as the second part, except that it has an additional <api> tag
that puts an object into the global namespace.
<abs contexttype="opengear" id="main-abs">

<meta>

// Code from Example Part 2: onload handler and first API

<ogscript handles="onload" id="main-abs-onload"

name="Main onload handler" targetid="main-abs">

ogscript.debug ('First onload handler');

</ogscript>

<api id="api-pretty" name="Pretty Printer">

// pretty printer

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));

</api>

// Additional second API for Example Part 3:

<api id="api-second" name="Second API">

// define object in global namespace

var animal = {

type: 'tortoise'

}

// print global namespace to debug pane

ogscript.debug ('second api:\r\n' + pretty(this));

</api>

</meta>

</abs>

When the panel is loaded, the output appears as follows:
13:20:56:437: First onload handler

13:20:56:447: first api:

{}

13:20:56:447: second api:

78 • ogScript Reference DashBoard CustomPanel Development Guide

{

"animal": {

"type": "tortoise"

}

}

The output shows that the onload handler and the APIs have loaded in their lexical order, and we've
now added the var object named animal to the global namespace.

The next part of the example adds one more <api> tag that purposely conflicts with the animal
defscription we just defined.

Example – Part 4: Adding an <api> Tag that Conflicts with a Previous <api> Tag

The third part of the example introduced an <api> tag that defined a var named animal, with a type
value of tortoise. This var exists in the global namespace.

The fourth part of this example contains an additional <api> tag that also defines a var named animal,
in conflict with the previous API.

The code for this part of the example is the same as before, except that a third <api> tag is added:
// The following API will conflict with a previous API

// Insert it after the second API.

<api id="api-third" name="Third API">

// define object in global namespace

var animal = {

type: 'hare'

}

// write out global namespace.

// Note that this uses pretty() from in another api

ogscript.debug ('third api:\r\n' + pretty(this));

</api>

When the panel is loaded, the output appears as follows:

13:33:24:091: First onload handler

13:33:24:098: first api:

{}

13:33:24:098: second api:

{

"animal": {

"type": "tortoise"

}

}

13:33:24:099: third api:

{

"animal": {

"type": "hare"

}

}

The output shows that the animal’s type has been redefined as a hare instead of a tortoise. The next
part of the example sets the immediate=true attribute for the third (hare) API.

DashBoard CustomPanel Development Guide ogScript Reference • 79

Example – Part 5: API Definition with immediate="true"

The fifth part of the example demonstrates the importance of order. The third API has the attribute
immediate = ‘true’, which means it is to be loaded before others that do not have their immediate
attributes set to true, regardless of the order they appear in the code.

The third API uses the pretty() function. Because the third <api> tag is processed before pretty()
is defined, an error results.

The code is the same as before, except the following line:
<api id="api-third" name="Third API">

Is replaced with this:
<api id="api-third" immediate="true" name="Third API">

Because the <api> tag that appears last in the code has its immediate attributes set to true, it is
loaded before all others, and before the onload handler.

When the panel is loaded, the output appears as follows:

EXCEPTION:

ReferenceError: "pretty" is not defined. (Element API: api-third#7)

Because this <api> tag was invoked before all the other ones, the pretty() function it uses from
another API isn't yet defined, so we get an error.

You can fix this problem in one of two ways:

1. Removing the immediate="true" attribute, unless it is required. Removing it and ensuring the API
was loaded after APIs upon which it depends would fix the problem.

2. Set the immediate="true" attribute for the <api> tag that provides pretty(). As long as it's
lexically in front of the third API, we'll get the behaviour we want or expect, as shown here:

13:47:33:833: first api:

{}

13:47:33:834: third api:

{

"animal": {

"type": "hare"

}

}

13:47:33:864: First onload handler

13:47:33:865: second api:

{

"animal": {

"type": "tortoise"

}

}

The final output shows:

• those <api> tags set to load immediately did so before both the onload handler, and the second
<api> tag that didn't have immediate="true" set.

• the immediately loaded <api> tags loaded in their relative lexical order, so the third <api> tag
could use the pretty() function defined in the first.

80 • ogScript Reference DashBoard CustomPanel Development Guide

• the tortoise beat the hare because two <api> tags defined the same global variable, and the last
one to do so "won" the race.

The final .grid file for this example is as follows:
<abs contexttype="opengear" id="main-abs">

<meta>

<ogscript handles="onload" id="main-abs-onload"

name="Main onload handler" targetid="main-abs">

ogscript.debug ('First onload handler');

</ogscript>

<api id="api-pretty" immediate="true" name="Pretty Printer">

// pretty printer for objects

function pretty (obj) {

return JSON.stringify(obj, null, 2);

}

// print global namespace to debug pane

ogscript.debug ('first api:\r\n' + pretty(this));

</api>

<api id="api-second" name="Second API">

// define object in global namespace

var animal = {

type: 'tortoise'

}

// print global namespace

ogscript.debug('second api:\r\n' + pretty(this));

</api>

<api id="api-third" immediate="true" name="Third API">

// overwrite the existing definition of animal

var animal = {

type: 'hare'

}

// write out global namespace

ogscript.debug('third api:\r\n' + pretty(this));

</api>

</meta>

</abs>

Loading order with Minimal Mode and Subscriptions Protocols
If a device developer has implemented support for Minimal Mode and Subscriptions
protocols on an openGear protocol (OGP) device and the DashBoard CustomPanel that
interacts with it also supports these protocols, then when the panel loads it will only load
parameters from the device's indicated minimal set of parameters and its’ subscriptions list

DashBoard CustomPanel Development Guide ogScript Reference • 81

of OIDs. This also applies to Ross products that support these protocols, like Ultrix and
Ultritouch.

Tip: You can check whether a DashBoard CustomPanel supports subscription by double-
clicking on the empty canvas to open the Component Editor, and navigating to the topmost
level of the panel’s source code to verify whether a subscription="true" tag is present in
the top level attributes. Alternatively, if multiple device contexts are used, the subscription
tag may only appear in the <context/> tag. In the DashBoard user interface, you may also
notice additional options are available for devices that support subscriptions, and these
selection choices remain inactive if they do not apply to a selected device.

Enabling Reuse by Keeping APIs in Separate Files
Although all the examples in this section show the API code inline with the OGLML, it's good practice
to keep them in separate JavasScript files.

This allows you to reference the API code from any CustomPanel, and to effectively update all uses of
the API code by editing a single JavaScript file.

We recommend using a naming convention such as the following:

• myfile.js for 'pure' javascript files that do not contain ogScript or params objects specific to
ogScript, and therefore could be used in DashBoard or anywhere else.

• myfile.grid.js for APIs that rely on using ogscript and/or params objects.

DashBoard's GUI provides a convenient way to navigate to JavaScript files you wish to include. The
impact on the OGLML is to set the src attribute like this:

To reference a JavaScript file from within the tag, set the src attribute to the filepath, as in the following
example:
<api src="file:/path/to/file/myfile.grid.js"/>

Benefits of using separate files for APIs include the following:

• You can easily share APIs between different custom panels.
• For ‘pure’ JavaScript files, you can quality assurance tools such as JSHint to weed out

programming.

82 • ogScript Reference DashBoard CustomPanel Development Guide

Managing Scope
Everything defined within an <api> tag has global scope. This means that naming clashes are likely to
occur if you include <api> tags from multiple authors.

Consider the following two APIs, each of which contains a function named initialize():

// Transcendental Vector Engine API

function initialize (arg1, arg2) {

// do stuff in <api/> 1

}

// Pressurized Water Reactor API

function initialize (arg1) {

// do stuff in <api/> 2

return someValue;

}

Whichever of these two APIs appears later in the .grid file overwrites the previous API’s
initialize() function, almost certainly producing undesirable results.

To minimize and ideally eliminate such problems, we strongly recommend the use of JavaScript's
module pattern because it minimizes use of the global namespace.

 An Internet search for 'Javascript Module Pattern' provides plenty of educational material at some
depth. The following section provides a concise summary.

The Module Pattern
The main idea of the module pattern is to keep almost everything private to the module, which is
implemented as an immediately invoked function expression, as demonstrated in the following example:
var myModuleName = (function() {

// every object I define here is kept private and cannot be

// accessed from outside the module because they are contained

// by a 'closure' which is the space between the outermost

// curly brackets {…} in this example.

function initialize () {

// do stuff

}

// The objects I wish to publish are referenced in this JSON object

// that allows precise control over what is revealed to client apps

return {

initialize: initialize

}

}());

Usage from elsewhere in the CustomPanel is simple, and which particular initialize function you you
use is clear:
TVE.initialize(5, 7); // initialize transcendental vectors

var isSafe = PWR.initialize('Reactor B'); // initializes PWR reactor B

DashBoard CustomPanel Development Guide ogScript Reference • 83

The code inside the included JavaScript files might look like this:

Transcendental Vectors Engine <api/>
// Code in the file, transcendentalVectorsEngine.grid.js:

// This puts an object called 'TVE' in the global namespace

var TVE = (function() {

function initialize (arg1, arg2) {

// do stuff

}

// publish API

return {

initialize: initialize

}

}());

Pressurized Water Reactor <api/>
// Code in the file, pressurizedWaterReactor.grid.js:

// This puts an object called 'PWR' in the global namespace

var PWR = (function () {

// private attribute - cannot be accessed from within the Custom Panel

var temp;

function initialize (arg1) {

// do stuff

return temp < 200;

}

}());

84 • ogScript Reference DashBoard CustomPanel Development Guide

OGLML Reference

In This Section
This section describes the OGLML tags.

The following topics are discussed:

• General Attributes
• Style Hints
• Layout/Container Tags
• Widget Tags
• Non-UI Tags
• Device Resource Declarations
• Device Resource Tags
• Macro Expansion

General Attributes
An OGLML document consists of a series of (nested) tags, described in detail in the following sections.
Each tag can take optional attributes. The following chart lists attributes that can be used with all tags.

Note that there are also tag-specific attributes; these are discussed in the Tags section.

You can also find more information about

DashBoard CustomPanel Development Guide ogScript Reference • 85

• Using OGP Devices that Support Subscriptions Protocol

o subscriptions

o Examples

Syntax
<component attribute="value" attribute="value" ... >

General Attributes

Attribute Values Restrictions Description
containertype bottom

inset
etched
raised
lowered
tabpage

 Adjust the border and shading of the
component. See the examples below.

scroll Should not be
used with
“browser” tag.
Nesting within
another “scrolls”
element is not
recommended

Scrolling for the
“menu” tag will
always be true.

Indicates that the component created by
the tag should be enclosed in a
scrollable container. If the display is too
small to display the component,
horizontal or vertical scrollbars are
added.

true

Provides both horizontal and vertical
scrollbars

false Provides no scrollbars

horizontal Provides only horizontal scrolling

vertical Provides only vertical scrolling

always Forces horizontal and vertical scrollbars
to always be visible.

contexttype opengear
…

 A device context is a data structure that
contains information about the attributes
of a device. The contexttype indicates
the type of device or data source in the
values.

objectid node-id of the source of parameters
within container. The objectid is passed
onto child elements and containers.

objecttype Type of device when communicating
with an openGear or DashBoard
Connect device.

id String Must be unique
within all OGLML
files displayed by
a device.

IDs must only

Used to uniquely identify/reference an
element in the OGLML file.

86 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
use A-Z, a-z, 0-9,
“-“, and “_”
characters.

subscriptions Boolean Required for
devices that
support
subscriptions
protocol.

This attribute can
only be added to
Layout/Container
tags.

If you are using
more than one
OGP device with
subscriptions
support as a data
source for your
CustomPanel,
you can use
context (or device
context) tags.

When set to true, this flag indicates
support for openGear Protocol (OGP)
JSON devices that support the
Subscriptions Protocol. These protocols
significantly improve the handling of
OGP JSON device communication by
eliminating unnecessary parameter
updates.

width Positive integer Required for
browser tags

Specifies the preferred with (in pixels) for
a component. May be ignored by
DashBoard depending on the
component.

height Positive integer Required for
browser tags

Specifies the preferred height (in pixels)
for a component. May be ignored by
DashBoard depending on the
component.

style style hints If a parameter
already provides
style hints as part
of its constraint,
style hints should
not be overridden
with this style tag
– results are
unpredictable.

openGear Style Hints are used to specify
the background color, foreground color,
icon, and border for certain components.
Refer to Style Hints.

DashBoard CustomPanel Development Guide ogScript Reference • 87

Using OGP Devices that Support Subscriptions Protocol

Using OGP JSON devices that support subscriptions is recommended to:

• Optimize memory usage and communication

• Increase panel efficiency

• Load device panels faster

Overview of Requirements to Support Subscriptions on the CustomPanel Side
DashBoard CustomPanels that have a data source where the OGP device supports the subscription
protocol will require the following components to take advantage of subscriptions:

1. The subscriptions="true" attribute must be added to either context (device context) tags
or a Layout/Container Tags. The following other General Attributes are required:
contexttype="opengear", objectid="my ID Here", objecttype="my DeviceType
Here".

Tip: It is recommended that you use the DashBoard Component Editor to add the data source,
and when you add the device that supports subscriptions you can select the auto-subscribe
checkbox to add this automatically.

2. The subscription oids="oid1,oid2,oid3*" list must be specified in the panel. This
comma separated list supports wildcards and must be added to indicate which device OID
updates the DashBoard CustomPanel will always receive. See subscription

Note: If you followed the tip in step 1 and added a device context, you will still need to add the
oids manually to the template provided.

3. Optional: You can make use of the new subscribe and unsubscribe functions to modify params
Objects.

Tip: You can use the ogScript Editor > Script Palette to add these functions.

For related resources, see: context (device context), subscriptions, meta, subscription

subscriptions
When set to true in a Container or Layout Tag, this attribute indicates support for openGear
Protocol (OGP) JSON devices that support the Subscriptions Protocol. These protocols significantly
improve the handling of OGP JSON device communication by eliminating unnecessary parameter
updates. Panels must also indicate a list of subscription OIDs to receive in addition to the minimal set.

Note: When you drag and drop components from a DashBoard Connect or OGP device panel into
another DashBoard panel, you will see a prompt that allows you to automatically enable subscriptions
for the device (which adds the subscriptions="true" tag to your panel), and/or auto-subscribe to
parameters (which adds the list of subscription OIDs).

88 • ogScript Reference DashBoard CustomPanel Development Guide

Tip: If the DashBoard Connect or OGP device does not support subscriptions, then the Parameter
Subscription Options will be grayed out throughout the DashBoard UI.

How device communication with the DashBoard Client has changed:

Instead of always receiving a full set of all the parameter updates from an OGP device, now panels can
get a minimal set of parameter updates that is sent by OGP devices. With subscriptions, panels can
indicate a list of subscription OIDs to receive in addition to the minimal set.

Note: It is necessary to indicate a list of subscription oids that the panel will always receive parameter
updates for from the OGP JSON device. See, subscription and add the list using the oids
attribute.oidsoidsoidsoids

You can see an example of the syntax below for a top level openGear context. In this case an <abs/>
absolute container is used, but any layout/container tag is valid.

Syntax of a Subscriptions Panel with Multiple Elements from a Device
<abs contexttype="opengear" id="_top" keepalive="false"
objectid="MyUltritouch..." subscriptions="true">
 <meta>

 <subscription oids="oid1, oid2, oid3*"/>
 </meta>

</abs>

Example of a Subscriptions Panel with Multiple Elements from a Device

<abs contexttype="opengear" id="_top" keepalive="false"
objectid="MyUltritouch..." subscriptions="true">
 <meta>

 <subscription oids="db.touch*,deviceoptions.speakervolume"/>
 </meta>

</abs>

Note: To add multiple device sources for the panel, add the subscriptions="true" attribute to each
device context tag, see: context (device context)

Syntax of a Subscriptions Panel with a Device Context Tag
<context contexttype="opengear" objectid="DeviceID..." subscriptions="true">
 <meta>
 <subscription oids="oid1, oid2, oid3*"/>
 </meta>

DashBoard CustomPanel Development Guide ogScript Reference • 89

</context>

Example of a Subscriptions Panel with Two Device Contexts
<abs contexttype="opengear" id="_top" keepalive="false"
objectid="MyUltritouch..." objecttype="Ultritouch Device">

 <context contexttype="opengear" objectid="Kyles_Ultritouch..."
subscriptions="true">
 <meta>

 <subscription oids="db.touch*,deviceoptions.speakervolume"/>
 </meta>

 </context>

 <context contexttype="opengear" objectid="Daves_Ultritouch..."
subscriptions="true">
 <meta>

 <subscription oids ="devices*, deviceoptions.lcdbrightness"/>
 </meta>

 </context>

</abs>

For related resources, see: context (device context), subscriptions, meta, subscription ,

90 • ogScript Reference DashBoard CustomPanel Development Guide

Using OGP Devices that Support Subscriptions Protocol

Examples
The following image illustrates the available containertype values:

Figure 62 – containertype examples

DashBoard CustomPanel Development Guide ogScript Reference • 91

openGear Style Hints
openGear Style Hints provide something similar to an inline style CSS attribute in HTML. For certain
components, they can be used to specify a background color, foreground color, border, and icon. The
hints can be provided inside OGLML tags or via parameter choice constraint values.

Syntax
To specify a style hint inside an OGLML tag, the style attribute is used:
<component style="style-hint;style-hint;...;" component attributes>

To specify a style hint within a parameter choice constraint, the style tag is inserted at the end of the
constraint value, enclosed in angle brackets (< >). In order to represent the angle brackets in the
OGLML document, they must use standard XML escape sequences (< >). Specifying hints
within the constraint value allows different styles to be applied to each choice.
<constraint key="key">value<style-tag;style-tag;... ></constraint>

Note Style hints may be specified in either the OGLML style attribute or within the constraint
value, but not both.

For clarity, this document will provide examples using the OGLML style attribute only, however the
style hints may be utilized within constraints unless specifically mentioned.

Style Hint Reference
The following style hints are supported:

Tag Description
#color-value Sets the component background color.

bdr:border-style Sets the component border style.

bdr#color-value Sets the component border color.

bg#color-value Sets the component background color.

bg-align:value Sets the alignment of a background image.

bg-fill:value Controls how a background image is sized.

bg-u:image-url Sets a container background to image located at a specified URL.

di:none Removes a component drag icon.

di-eo:external-oid Sets a component drag icon to image encapsulated in an external OID.

di-u:image-URL Sets a component drag icon to image located at a specified URL.

f:style-hint Style modifier when button value is false.

fg#color-value Sets the component foreground color.

font:font-type Sets the font type.

grid#color-value Sets the table gridline color.

hi:none Removes a component hover icon.

hi-eo:external-oid Sets a component hover icon to image encapsulated in an external OID.

hi-u: image-URL Sets a component hover icon to image located at a specified URL.

i:none Removes a component icon.

i-eo:external-oid Sets a component icon to image encapsulated in an external OID.

i-u: image-URL Sets a component icon to image located at a specified URL.

m:t,l,b,r Sets insets around the label of a button.

o#color-value Sets the text outline color.

92 • ogScript Reference DashBoard CustomPanel Development Guide

Tag Description
size:font-size Sets the text font size.

style:style-id Applies style hints defined within a style tag.

t:style-hint Style modifier when button value is true.

tt:tool-tip-string Sets a tooltip for a label or button.

txt-align:alignment Sets the alignment of text.

style Style Hint
User styles may be created within an OGLML document to allow standardized formatting to be applied
to multiple components. Styles are defined using the style tag. A predefined style may be referenced
by a component as part of its style attribute. Additional style hints may be included in the same style
attribute string. If the style string explicitly specifies a hint which contradicts a hint in the predfined
style, the explicitly added hint shall supersede.

Style Hint Values Restrictions Description
style:style-id String The style with the

provided ID must
be defined in an
OGLML
document at a
higher scope than
where it is
referenced.

Apply the style hints of the style defined
in a different set of style hints. See style
tag documentation for more information.

DashBoard CustomPanel Development Guide ogScript Reference • 93

Examples
The following example applies button style hints as defined in the predefined style
CommandButtonStyle. Note that the “Stop” button has an additional hint applied (size:big), and
overrides the background color (bg#ff0000).
<style id="ButtonStyle" value="bg#808000;bdr:etched;"/>

<button name="Start" style="style:ButtonStyle;"/>

<button name="Stop" style="style:ButtonStyle;size:big;bg#ff0000;"/>

<button name="Reset" style="style:ButtonStyle;"/>

Figure 63 - Style Tag Example

Component Color
The foreground, background and border colors of components may be specified. It is often a good idea
to override the background and foreground as a pair to avoid the possibility of the background and
foreground being the same (or similar) colors in the UI.

Style Hint Values Restrictions Description
#color-value
or
bg#color-value

#RRGGBB
or

#color-constant
or

#RRGGBBAA

 Set the background color of the
component.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

fg#color-value

#RRGGBB
or

#color-constant
or

#RRGGBBAA

 Set the foreground color of the
component.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

bdr#color-value #RRGGBB
or

#color-constant
or

#RRGGBBAA

 Create a line border around the
component with the specified color.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

o#color-value #RRGGBB
or

#color-constant
or

#RRGGBBAA

 Create an outline around the text within
a component with the specified color.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

grid#color-value #RRGGBB
or

#color-constant
or

#RRGGBBAA

Applies to table
container only.

Specifies the color of the gridlines for a
table container.
Colors may be specified as RGB, RGBA
or one of the pre-defined color
constants. R, G, B and A are specified
as 2-digit hex values.

94 • ogScript Reference DashBoard CustomPanel Development Guide

Example
The following style tag creates a label using the predefined background #panelbg and the foreground
(text) in orange.
<label name="Label" style="bg#panelbg;fg#FFC000;"/>

Predefined Colors
DashBoard defines color constants, which make up the standard color scheme. Color constants are the
default colors that are used when you build CustomPanels in DashBoard. These colors are used in the
standard controls within DashBoard, but may be applied to the background, foreground or border color
style tag of any component. Custom color constants may be defined within an OGLML document using
the color tag.

Color constants can be used anywhere in your code in the place of actual values. You can add them in
the GUI using the drop-down color palettes available in the Style tab of the Component Editor.

The following image illustrates the pre-defined color constants in the color palette:

Figure 64 - Predefined color constants

Simply hover your mouse over a color palette color to see the intended standard control usage for the
color constant. In the following image you can see the selectedmuted color constant identified below:

Using the recommended DashBoard color scheme ensures that

• You are applying colors consistently throughout your UI.

• You are saving time, because you won’t need to customize the style of each standard control
that you add.

• Your panels will stay current with any new DashBoard color constant changes.

DashBoard defines the following color constants:

Color Constant Color Sample Description
#panelbg

Panel background color.

#panelfg

Panel foreground color for a basic control or button.

#selectbg

Background color for a toggle button that is selected.

DashBoard CustomPanel Development Guide ogScript Reference • 95

Color Constant Color Sample Description
#selectedmuted

Color for a mute button that is selected.

#buttonbg

Background color for a button.

#tableheader

Color for a table header.

#tablezebra

Secondary color for table rows.

#readonlyborder

Color for a read-only border.

#listbg

Background color for a list.

#tabbg

Background color for a selected tab.

#textbg

Color for background for text.

#lightdivider

Color of a light divider.

#darkdivider

Color of a dark divider.

#modaloverlay

Color for a modal overlay.

#timerfg

Foreground color for a timer.

#red

Red.

#orange

Orange.

#yellow

Yellow.

#green

Green.

#teal

Teal.

#blue

Blue.

#purple

Purple.

#pink

Pink.

#transparent

No fill; the element will be transparent.

#user-defined-color Color defined by the user using the color tag.

96 • ogScript Reference DashBoard CustomPanel Development Guide

Border Styles
The style of a component border may be specified with the bdr hint. If the border hint is not specified, a
simple line will be drawn for the control border.

Note: The containertype attribute, if specified for a component, will override the bdr style hint.

Style Hint Values Restrictions Description
bdr:border-style none Removes the border from the

component.

etched Create an etched border around the
component.

shadow Creates a drop shadow under the
component.

bdr#color-value Sets border color; see Component Color Section.

grid#color-value Sets grid color in a table; see Component Color Section.

Examples
The following image illustrates the border style hint:

Figure 65 - Border style

Text/Font Styles
The following style hints modify the rendering of text in a component.

Style Hint Values Restrictions Description
size:font-size Integer size

smaller
small
normal
big
bigger
biggest

 Set the font size for the component.
Number specifies a font size in points
(1/72”).
smaller corresponds to 2/3 normal size.
biggest corresponds to 4x normal size.
See examples below.

font:font-type default
bold
mono

 Set the control font to the default font, a
bold font, or a mono-spaced font.

txt-align:alignment center
north
northeast
east
southeast
south
southwest
west
northwest

 Controls the position of text within a
button or label control.

fg#color-value Sets text foreground color; see Component Color Section.

o#color-value Sets text outline color; see Component Color Section.

DashBoard CustomPanel Development Guide ogScript Reference • 97

Examples
The following image illustrates the size style

Figure 66 - size style attribute

The following image illustrates the font style:

Figure 67 - font style attribute

Icon Styles
Icon styles may be applied to label and button components. DashBoard allows separate icons to be
defined for the default icon, the icon when a mouse hovers over the control, and the icon when the
control is dragged (if dragging is enabled on the component).

Note Icon Styles have no effect on buttons with the flat attribute.

Style Hint Values Restrictions Description
i-eo:external-oid

External OID External OID
specified must be
type 0x03.

Set the icon for the component (applies
to labels and buttons).

i-u: image-URL URL String Full qualified URL
to PNG, GIF or
JPG image.

Set the icon for the component. (applies
to labels and buttons)

i:none Remove the icon for the component.

di-eo:external-oid

External OID External OID
specified must be
type 0x03.

Set the drag icon for the component
(only applies if “dragvalue” attribute is
used).

di-u:image-URL URL String Full qualified URL
to PNG, GIF or
JPG image.

Set the drag icon for the component
(only applies if “dragvalue” attribute is
used)

di:none Remove the drag icon for the
component.

hi-eo:external-oid

External OID External OID
specified must be
type 0x03.

Set the hover icon for the component
(applies to buttons)

hi-u: image-URL URL String Full qualified URL
to PNG, GIF or
JPG image.

Set the hover icon for the component
(applies to buttons)

hi:none Remove the hover icon for the
component.

Example
<button buttontype="push" style="i-u:http://my-server/RossLogo.jpg;hi-
u:http://my-server/DashBoardLogo.jpg;" />

98 • ogScript Reference DashBoard CustomPanel Development Guide

Figure 68 – Background and Hover Icon

Tooltip Style
Tooltip may be added to components. Balloon help text will be displayed when the mouse hovers over
the component.

Style Hint Values Restrictions Description
tt:tool-tip-string String May only be

applied to label
and buttons.

Set the tooltip of the component to the
specified String. A “;” can be inserted
into the string by inserting the escape
sequence “\;”.

Example
<button name="Tooltip" style="tt:This is the tooltip text" />

Figure 69 – Tooltip Style

Inset Style
Insets provide a margin from the edge of a component to the text or icon content.

Style Hint Values Restrictions Description
m:top,left,bottom,
right

4 Integers This hint can only
be applied to
button widgets.

Sets the margins around the label of the
button. The margins are specified in
pixels.

Background Styles
Background styles allow images to be placed in the background of container components.

Style Hint Values Restrictions Description
bg-u:image-url URL String Must be a fully

qualified URL.
Set the background image of the
component.

bg-fill:value none Do not scale the image.

both Stretch the image to the width/height of
the control.

horizontal Scale the image to the width of the
control (maintain aspect ratio).

vertical Scale the image to the height of the
control (maintain aspect ratio).

DashBoard CustomPanel Development Guide ogScript Reference • 99

Style Hint Values Restrictions Description
fit Scale the image to the largest size that

will fit inside of the control (maintain
aspect ratio).

crop Scale the image to fill the control
maintaining the aspect ratio. Crop the
image to remove the parts that don’t fit.

tile Tile the image (starting at the upper left)
to fill the background of the control.

paint9 Divide the image into 9 areas (defined
with Background Insets) to define fixed
corners, vertically or horizontally
stretched sides, and a stretched center.

bg-align:value center
north
northeast
east
southeast
south
southwest
west
northwest

 If the fill is set to anything other than
“both” or “tile”, this controls where the
background is positioned in the
component.

Button Style Modifiers
All style options can be overridden for toggle and radio buttons, such that the style of the widget is
determined by the value of the backing parameter. For toggle buttons, the style can be specified for the
true state (button toggled down) and false state (button toggled up). For radio buttons, the style can be
specified for each choice for the true state (choice selected) and false state (choice not selected).

100 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
<component style="t:true-style-hint;f:false-style-hint;...;" >

Hint Modifier Values Restrictions Description
t:true-style-hint Valid style hint Applies the style hint only when the

choice is true.

f:false-style-hint Valid style hint Applies the style hint only when the
choice is false.

Examples
The following example creates a toggle button whose color is green when true (toggled down) and red
when false (toggled up):
<param oid="0x7" style="t:bg#00ff00;f:bg#ff0000;" widget="13"/>

Figure 70 - Toggle Button Style Modifier

The following example changes the font size to big for the selected radio button:
<param oid="0x6" style="t:size:big;f:size:normal;" widget="9"/>

Figure 71 – Radio Button Style Modifier

Layout/Container Tags
Container tags define regions of the layout which contain other elements. Containers control how the
child elements are presented within DashBoard. Container tags accept attributes which impact the
container as a whole, and may also specify additional attributes which may be applied to child elements;
these define how the elements are displayed within the container. Containers may be nested.

The following containers are supported:

Tag Description
abs Allows elements to be placed in absolute positions

borderlayout Creates a border layout that maintains proportions of components
anchored to the border edges or center when resized, and offers the
option to set one component to grow in relation to the other components

flow Aligns elements in a horizontal row

pager Creates a pager control component that is customizable using script

popup Presents child elements in a popup window

simplegrid Creates a grid of fixed-size rows and columns

split Creates a draggable split screen with 2 components

tab Creates a tabbed page

table Creates a grid of rows and columns

DashBoard CustomPanel Development Guide ogScript Reference • 101

abs
Use absolute positioning and sizing for components inside of the abs tag. The sizing and positioning of
child components must be specified as attributes of those child components.

Syntax
<abs container attributes>
 <component child component attributes> </component>
 <component child component attributes> </component>
 . . .
</abs>

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <abs> tag:

Attribute Values Restrictions Description
virtualwidth Integer Defines a virtual width and height to use

for all coordinates inside of the
container. All offsets and dimensions
inside of the container are scaled based
on current width/height vs.
virtualwidth/virtualheight.
When these attributes are used, the UI
will scale as the container ize changes.

virtualheight Integer

subscriptions String When set to subscriptions="true", this
flag indicates support for openGear
Protocol (OGP) JSON devices that have
implemented both minimal mode and
subscription protocol. The minimal mode
protocol provides the foundation for the
subscription protocol.

See the subscriptions entry for more
details.

Child Component Attributes
In addition to General Attributes, the following attributes may be specified to child components:

Attribute Values Restrictions Description
left Integer Defines the distance between the left

edge of the abs and the component.
When combined with right it will force
the component to fill the available area.

right Integer Defines the distance between the right
edge of the abs and the control.
When combined with left, it will force the
component to fill the available area.

top Integer Defines the distance between the top
edge of the abs and the control.
When combined with bottom, it will force
the component to fill the available area.

bottom Integer Defines the distance between the bottom
edge of the abs and the control.
When combined with top, it will force the
component to fill the available area.

102 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
width Integer Ignored if both

left and right are
specified.

Defines the width of the control. If
undefined, the control’s calculated
preferred size will be used.

height Integer Ignored if both
top and bottom
are specified.

Defines the height of the control. If
undefined, the control’s calculated
preferred size will be used.

virtualwidth and virtualheight
If the virtualheight and virtualwidth attributes are not set, components within the abs container will be
displayed in their specified size. Resizing the abs container will not scale the child components. If the
abs area does not encompass the area required for the specified components, the components will be
cropped.

If virtualheight and virtualwidth attributes are set, component size and position within the abs container
are scaled according to:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ × �
𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣ℎ
�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 × �
𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
�

Examples
The following example creates an abs container with 4 buttons placed in a 2x2 grid. The buttons will not
scale if the abs is resized (they will be cropped):
<abs left="16" top="16" width="250" height="250">
 <button left="5" top="5" width="100" height="100" name="1"/>
 <button left="110" top="5" width="100" height="100" name="2"/>
 <button left="5" top="110" width="100" height="100" name="3"/>
 <button left="110" top="110" width="100" height="100" name="4"/>
</abs>

The following example creates an abs container with 4 buttons placed in a 2x2 grid. The buttons will
scale if the abs is resized:
<abs left="16" top="16" width="250" height="250" virtualwidth="250"
virtualheight="250">
 <button left="5" top="5" width="100" height="100" name="1"/>
 <button left="110" top="5" width="100" height="100" name="2"/>
 <button left="5" top="110" width="100" height="100" name="3"/>
 <button left="110" top="110" width="100" height="100" name="4"/>
</abs>

In the following example, the 2x2 grid will be scaled to half its original size. All buttons will appear
50x50 pixels in size:
<abs left="16" top="16" width="125" height="125" virtualwidth="250"
virtualheight="250">
 <button left="5" top="5" width="100" height="100" name="1"/>
 <button left="110" top="5" width="100" height="100" name="2"/>
 <button left="5" top="110" width="100" height="100" name="3"/>
 <button left="110" top="110" width="100" height="100" name="4"/>
</abs>

DashBoard CustomPanel Development Guide ogScript Reference • 103

borderlayout
You can use the border layout tool to create an area on a CustomPanel that you can anchor components
to and later resize to maintain your intended layout. You can use a border layout to anchor components
against any of the four borders of the container and in the center. It is useful for adding menus along the
border edge of a CustomPanel, or to group components within a CustomPanel. A border layout must
have more than one component, because it is designed to responsively resize multiple objects contained
within its borders. Typically, you can have a component anchored to each side, and then a fifth central
component. Any component could also be a basic canvas containing other components.

If you want one of the anchored components to grow when the container is resized, you can set the
border layout's Growth Quadrant to match the component area you'd like to grow (top, right, bottom,
left, or center). You can only set a single growth quadrant. The areas that aren't in the growth quadrant
will be adjusted when you resize the border layout container. The components anchored to the top or
bottom will keep the same height, while the width expands or minimizes to match the container size.
The components anchored to the right or left will keep the same width, while the height expands or
minimizes to match the container size.

If a Growth Quadrant is not specified in the GUI, the [default] border layout will maintain certain
proportions of the side components, and the central component will grow when resized. For the top and
bottom sides, the height is maintained, and the width will fill the container as it is resized. For the left or
right sides, the width is maintained, and the height will fill the container as it is resized.

Use absolute positioning and sizing for components inside of the borderlayout tag. The sizing and
positioning of child components must be specified as attributes of those child components. Child
components are resized based on the specified growth quadrant.

Note: In the child component attributes you must include an anchor that is set to Top, Bottom, Right,
Left or Center to specify the side that the component is anchored to. In the source code the anchors are
north, south, east, west or center.

For more details, see the DashBoard User Guide.

You can see an example of a border layout with labels used as the anchored components below:

Syntax
<borderlayout container attributes>
 <component child component attributes> </component>
 <component child component attributes> </component>
 . . .
</abs>

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <borderlayout>
tag:

104 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
grow String In the GUI, the

growth quadrant
must be set to
Value must be set
to [default],
Center, Top,
Bottom, Left or
Right.

In the source code,
the value must be
set to north,
south, east,
west or center.

This attribute determines which of the
anchored components will grow when
the border layout is resized responsively.

This attribute impacts how the width and
height of the child components will
behave when the border layout is
resized responsively.

Note: If this attribute is not defined, then
by default the center component is the
only one that will grow when resized.
Any components on the border will
responsively resize as follows:

• north or south - For the top
and bottom sides, the height is
maintained, and the width will
fill the container as it is resized.

• east or west - For the left or
right sides, the width is
maintained, and the height will
fill the container as it is resized.

Note: If set to [default] in the GUI, then
the grow attribute will not appear in the
source code, but by default the behavior
is the same as grow="center".

Child Component Attributes
In addition to General Attributes, the following attributes may be specified to child components:

Attribute Values Restrictions Description
anchor String In the GUI, the

value must be set
to Top, Bottom,
Left and Right.

In the source
code, the values
are shown as
north, south,
east, west or
center.

Defines the border side which the
component will be anchored to.

DashBoard CustomPanel Development Guide ogScript Reference • 105

Attribute Values Restrictions Description
width Integer Note: For certain

components, you
must include this
attribute for the
component to
appear.

With labels or
buttons, you don't
need to include a
defined width as
the text will
determine the
width. With
<abs/> containers
the width is
required for the
component to
appear on the
canvas.

Defines the width of the component. This
is impacted by the growth attribute.

height Integer Note: For certain
components, you
must include this
attribute for the
component to
appear.

With labels or
buttons, you don't
need to include a
defined height as
the text will
determine the
height. With
<abs/> containers
the height is
required for the
component to
appear on the
canvas.

Defines the height of the component.
This is impacted by the growth attribute.

Example
The following example creates a border layout that is set to grow='north', the label image is set to
anchor='north', and the table is set to anchor='center'. The figure below shows the border layout before
and after being resized. You can see that when the border layout is resized, the label image grows north,
and that the table remains centered, and became shorter to accommodate the label image's growth.

106 • ogScript Reference DashBoard CustomPanel Development Guide

<borderlayout grow="north" height="480" style="bdr:etched;" width="220">

<label anchor="north" height="40" style="bg#dark;bg-u:cd-3.jpg;bg-
fill:fit;" width="6"/>

<param anchor="center" expand="true" height="70" oid="params.table"
showlabel="false" width="250"/>

</borderlayout>

For more information and an expanded example, see the DashBoard User Guide.

flow
Arrange controls horizontally across the page. Wrap the controls vertically if there is not enough space
to show all controls on a single row.

Syntax
<flow container attributes>

 <component component attributes> </component>
 <component component attributes> </component>
 <component component attributes> </component>
 . . .
</flow>

Container Attributes
In addition to General Attributes, the following attributes may be specified:

Attribute Values Restrictions Description
anchor center

east
west

 Defines the alignment of the controls

Default values shown in bold.

Child Component Attributes
See General Attributes. There are no additional attributes for child components.

Example
The following example places 6 buttons in a horizontal row, aligned to the left edge of the flow

DashBoard CustomPanel Development Guide ogScript Reference • 107

container.
<flow height="200" left="16" top="16" width="1000">
 <button buttontype="push" height="126" name="1" width="126"/>
 <button buttontype="push" height="126" name="2" width="126"/>
 <button buttontype="push" height="126" name="3" width="126"/>
 <button buttontype="push" height="126" name="4" width="126"/>
 <button buttontype="push" height="126" name="5" width="126"/>
 <button buttontype="push" height="126" name="6" width="126"/>
</flow>

popup
Creates a button that, when clicked, displays a balloon dialog containing the component. Popup groups
may be defined. Only one popup from each group is displayed at a time, however popups from different
groups may be displayed simultaneously.

Note: It is an error to put more than 1 component tag under a popup tag.

Syntax
<popup container attributes>
 <component child component attributes> </component>
</popup>

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <popup> tag:

Attribute Values Restrictions Description
name String The name to display on the button to

trigger the popup.

group String

 The group attribute is used to define
different groups that can be open at the
same time. If this attribute is not
defined, the popup is not a part of any
group.

Child Component Attributes
In addition to General Attributes, the following attributes must be specified to child components:

Attribute Values Restrictions Description
width Integer Required Width of the container inside the popup

height Integer Required Height of the container inside the popup

Example
The following example creates a popup triggered by a button labelled “Selector”. The popup contains an
abs container with 4 buttons placed in a 2x2 grid.
<popup name="Selector">
 <abs height="100" width="100">
 <button left="0" top="0" width="50" height="50" name="1"/>
 <button left="50" top="0" width="50" height="50" name="2"/>
 <button left="0" top="50" width="50" height="50" name="3"/>
 <button left="50" top="50" width="50" height="50" name="4"/>
 </abs>

108 • ogScript Reference DashBoard CustomPanel Development Guide

</popup>

Figure 72 – Popup

pager
Creates a pager control component that is customizable using script. It is not currently available in the
GUI. The pager control is built into an <abs> absolute container, and the abs container attributes can be
used.

Syntax
For more information on creating a pager control using scripting, see the DashBoard User Guide.

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <pagercontrol>
tag:

Attribute Values Restrictions Description
virtualwidth Integer Defines a virtual width and height to use

for all coordinates inside of the
container. All offsets and dimensions
inside of the container are scaled based
on current width/height vs.
virtualwidth/virtualheight.
When these attributes are used, the UI
will scale as the container size changes.

virtualheight Integer

Example
The following example creates a horizontal pager control.
<abs contexttype="opengear" id="_top" keepalive="true">

 <pager height="224" left="13"
style="look:round;bg#923030;bdr:thick;bdr#000000;" top="13" width="567">

 <config key="w.orientation">horizontal</config>

 <config key="w.model">var model = {

 currentPage: 1,

 getNumPages: function()

 {

DashBoard CustomPanel Development Guide ogScript Reference • 109

 return 5;

 },

 getCurrentPage: function()

 {

 return this.currentPage;

 },

 scrollToPage: function(pageNum)

 {

 this.currentPage = pageNum;

 ogscript.reveal('page-' + pageNum);

 }

}

;

model</config>

 <tab tabposition="none">

 <abs id="page-0"/>

 <abs id="page-1">

 <label height="58" left="143" name="Page1Label" style="txt-
align:west" top="58" width="161"/>

 </abs>

 <abs id="page-2">

 <button buttontype="push" height="65" left="185"
name="Page2Label" top="50" width="182"/>

 </abs>

 <abs id="page-3"/>

 <abs id="page-4"/>

 <abs id="page-5"/>

 </tab>

 </pager>

</abs>

simplegrid
Creates a grid of fixed-sized cells. All cells in a simplegrid control are of the same size. Child
components are laid out left-to-right, top-down and are sized to fill the cell. If more control over layout
is required, the table container should be used instead.

Syntax
<simplegrid container attributes>

 <component component attributes> </component>
 <component component attributes> </component>
 <component component attributes> </component>
 . . .
</simplegrid>

Container Attributes
In addition to General Attributes, the following attributes may be specified:

Attribute Values Restrictions Description
rows Integer Specifies the number of rows in the grid

cols Integer Specified the number of columns in the grid

110 • ogScript Reference DashBoard CustomPanel Development Guide

Child Component Attributes
See General Attributes. There are no additional attributes for child components.

Example
The following example creates a 2 row x 3 column grid, with buttons 1, 2, 3 on the top row and buttons
4, 5, 6 on the bottom row. Each cell is 100x100 pixels.
<simplegrid left="16" top="16" height="200" width="300" rows="2" cols="3">
 <button buttontype="push" name="1"/>
 <button buttontype="push" name="2"/>
 <button buttontype="push" name="3"/>
 <button buttontype="push" name="4"/>
 <button buttontype="push" name="5"/>
 <button buttontype="push" name="6"/>
</simplegrid>

split
Creates a split screen with exactly two components. The split is either horizontal (with a left component
and a right component, separated by a vertical split bar) or vertical (with a top component and a bottom
component separated by a horizontal split bar). If only one component is defined under the split tag,
the split is removed and the single component is returned.

Note: It is an error to put more than 2 component tags under a split tag.

Syntax
<split container attributes>
 <component child component attributes> </component>
 <component child component attributes> </component>
</split>

DashBoard CustomPanel Development Guide ogScript Reference • 111

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <split> tag:

Attribute Values Restrictions Description
orientation horizontal

 The first component will be on the left and

the second component will be on the right.

vertical The first component will be on the top and
the second component will be on the bottom.

Default values shown in bold.

Child Component Attributes
In addition to General Attributes, the following attributes may be specified to child components:

Attribute Values Restrictions Description
weight Double value

between +0.0
and 1.0

 Specifies how much of the screen should
be devoted to each side of the split.
If the weight is defined for both
components, the split is determined by
weight / total weight.

minw Positive integer The minimum width of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

minh Positive integer The minimum height of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

maxw Positive integer The maximum width of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

maxh Positive integer The maximum height of the component in
pixels. This is considered a hint and may
or may not be honored by DashBoard.

Example

The following example creates a split container with a horizontal split:
• Left side contains an abs container with 4 buttons placed in a 2x2 grid.
• Right side contains an abs container with 4 buttons placed in a 2x2 grid.

<split height="150" width="300" orientation="horizontal">
 <abs weight="0.5" height="100" width="100">
 <button left="5" top="5" width="25" height="25" name="1"/>
 <button left="30" top="5" width="25" height="25" name="2"/>
 <button left="5" top="30" width="25" height="25" name="3"/>
 <button left="30" top="30" width="25" height="25" name="4"/>
 </abs>
 <abs weight="0.5" height="100" width="100">
 <button left="5" top="5" width="25" height="25" name="5"/>
 <button left="30" top="5" width="25" height="25" name="6"/>
 <button left="5" top="30" width="25" height="25" name="7"/>
 <button left="30" top="30" width="25" height="25" name="8"/>
 </abs>
</split>

112 • ogScript Reference DashBoard CustomPanel Development Guide

tab
Creates a tab component where each child component within the tab tag represents a separate tab page
inside of the tab component. Note that the height and width attributes of a tab component include the
space occupied by the tab labels, not just the size of child components.

Syntax
<tab container attributes>
 <component for tab 1 child component attributes> </component>
 <component for tab 2 child component attributes> </component>
 . . .
</tab>

Container Attributes
In addition to General Attributes, the following attributes may be specified to the <tab> tag:

Attribute Values Restrictions Description
tabposition north

east
south
west
none

How the tabs are
rendered within
their quadrant is
determined by
the look and feel.

Specifies the placement of the tabs.

none Tabs will be hidden and the visible
component must be controlled through
the “reveal” tag or the OGP
REVEAL_ELEMENT trap.

tablayout scroll
stack

 If there are more tabs than can fit in the
horizontal space available, this controls
whether there are multiple rows of tabs
(“stack”) or if additional tabs are on the
same row and accessible via scrolling
(“scroll”).

tabheight Integer Tab will not
resize below
minimum size to
render tab label
text

Specifies the height of the tab label, in
pixels. Note that the width of the tab is
determined by the length of the tab label
names.

onchange ogScript String The provided snippet of ogScript is
triggered when the selected tab
changes.
Current tab index is:
this.getSelectedIndex()
Current tab name is:
this.getTitleAt(this.getSelectedIndex()
)

delay Boolean When set to “true,” the contents of the
tab will load only when the tab is
selected.

Default values shown in bold.

Child Component Attributes
In addition to General Attributes, the following attributes may be specified to child components:

DashBoard CustomPanel Development Guide ogScript Reference • 113

Attribute Values Restrictions Description
name String This attribute is

used in elements
contained within
a tab tag.

Specifies (or overrides) the name to
display in the tab for a component. If the
component provides its own name (e.g.
an OGP Menu), that name will be used
in the absence of this attribute.

selected default
forced
none

This attribute is
used in elements
contained within
a tab tag.

default = this tab will be selected by
default when the UI is loaded.
forced = this tab will be selected by
default when the UI is loaded and, if the
UI is refreshed, this tab will be selected
again.
none = when the UI is loaded, the first
tab in the tab group is selected. If the UI
is refreshed, DashBoard should attempt
to maintain the current tab selection.

Default values shown in bold.

Example

The following example creates a tab container with three tabs:
• First tab contains an abs container with 4 buttons placed in a 2x2 grid.
• Second tab contains an abs container with 4 buttons placed in a 2x2 grid.
• Third tab contains a single button
<tab width="250" height="300" left="1" tabposition="north" top="1">
 <abs height="300" width="250" name="First Tab">
 <button left="5" top="5" width="25" height="25" name="1"/>
 <button left="30" top="5" width="25" height="25" name="2"/>
 <button left="5" top="30" width="25" height="25" name="3"/>
 <button left="30" top="30" width="25" height="25" name="4"/>
 </abs>
 <abs height="250" width="250" name="Second Tab">
 <button left="5" top="5" width="25" height="25" name="5"/>
 <button left="30" top="5" width="25" height="25" name="6"/>
 <button left="5" top="30" width="25" height="25" name="7"/>
 <button left="30" top="30" width="25" height="25" name="8"/>
 </abs>
 <button name="Go"/>
</tab>

table
A table is a grid of rows and columns. A cell in the table can span any number of rows or columns.
Each cell in a table contains a component defined in a child tag. Similar to HTML, each row of cells in
a table must be encapsulated in a tr tag. Each element inside of a tr tag defines a component to be
placed inside a cell. For simple grids with fixed-sized cells, the simplegrid container may be used
instead.

114 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
<table container attributes>
 <tr>
 <component child component attributes> </component>
 <component child component attributes> </component>

. . .
 </tr>
 <tr>
 <component child component attributes> </component>
 <component child component attributes> </component>

. . .
 </tr>
 . . .
</table>

Child Tags

Tag Values Restrictions Description
<tr> Encapsulates a row.

<component> Any valid
component tag

 Defines the component for a table cell.
Must be a child of a tr tag.

Container Attributes
See General Attributes.

Child Component Attributes
The following set of attributes controls the layout of cells and components. To control the appearance of
the table contents, these additional attributes should be defined in the child tags that define the content
of the table cells.

Attribute Values Restrictions Description
fill Controls how the component inside of a

table cell fills the cell itself.

none Uses the component’s natural width and
height and floats it inside of the cell.

Horizontal Uses the component’s natural height but
fills the horizontal space.

Vertical Uses the component’s natural width but
fills the vertical space.

both Ignores the component’s natural width
and fills the entire cell.

anchor center
north
northeast
east
southeast
south
southwest
west
northwest

 If the fill is set to anything other than
both, this controls where the component
is attached to the cell.

rowspan Positive integer Cells must not
collide

The number of rows spanned by a cell.

DashBoard CustomPanel Development Guide ogScript Reference • 115

Attribute Values Restrictions Description
colspan Positive integer Cells must not

collide
The number of columns spanned by a
cell.

insets 4 positive
integers
separated by
commas.
e.g. “5,5,5,5”

 Specifies padding around the
component. The 4 numbers represent
the top, left, bottom, and right padding.
The insets are specified in pixels.

weightx Double value
between +0.0
and 1.0

 Specifies how to distribute extra
horizontal space.

The table calculates the weight of a
column to be the maximum weightx of
all the components in a column. If the
resulting layout is smaller horizontally
than the area it needs to fill, the extra
space is distributed to each column in
proportion to its weight. A column that
has a weight of zero receives no extra
space.

If all the weights are zero, all the extra
space appears between the grids of the
cell and the left and right edges.

weighty Double value
between +0.0
and 1.0

 Specifies how to distribute extra vertical
space.

The table calculates the weight of a row
to be the maximum weighty of all the
components in a row. If the resulting
layout is smaller vertically than the area
it needs to fill, the extra space is
distributed to each row in proportion to
its weight. A row that has a weight of
zero receives no extra space.

If all the weights are zero, all the extra
space appears between the grids of the
cell and the top and bottom edges.

orientation horizontal
vertical

Only applies to
element tags that
return multiple
components.

If a tag returns multiple components (e.g.
a param tag for an array parameter), this
specifies whether the returned
components should be in the same row
(horizontal) or in the same column
(vertical).

minw Positive integer The minimum width of the component in
pixels. This is considered a hint and
may or may not be honored by
DashBoard.

minh Positive integer The minimum height of the component in
pixels. This is considered a hint and
may or may not be honored by
DashBoard.

maxw Positive integer The maximum width of the component in
pixels. This is considered a hint and
may or may not be honored by
DashBoard.

116 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
maxh Positive integer The maximum height of the component

in pixels. This is considered a hint and
may or may not be honored by
DashBoard.

placeholders Positive integer
Default 0

 This tag specifies the minimum number
of elements which are expected to be
returned by a tag. If a tag returns fewer
than the specified number of elements,
placeholder elements are created and
added to the layout in their place.

A value of 0 means that the tag is
ignored if no elements were returned (or
the tag is undefined).

maxperrow Positive integer
Default -1

 A value > 0 defines the maximum
number of elements in a row. Additional
elements will be placed on the next row.

Default values shown in bold.

Note: DashBoard uses a Java Swing GridBagLayout internally. For more information about
GridBagLayout, please see
http://docs.oracle.com/javase/8/docs/api/java/awt/GridBagLayout.html

Example
The following sample utilizes a table to create a numeric keypad.
<table height="300" left="16" top="16" width="300">
 <tr>
 <button buttontype="push" fill="both" name="1"> </button>
 <button buttontype="push" fill="both" name="2"> </button>
 <button buttontype="push" fill="both" name="3"> </button>
 </tr>
 <tr>
 <button buttontype="push" fill="both" name="4"> </button>
 <button buttontype="push" fill="both" name="5"> </button>
 <button buttontype="push" fill="both" name="6"> </button>
 </tr>
 <tr>
 <button buttontype="push" fill="both" name="7"> </button>
 <button buttontype="push" fill="both" name="8"> </button>
 <button buttontype="push" fill="both" name="9"> </button>
 </tr>
 <tr>
 <button buttontype="push" fill="both" name="*"> </button>
 <button buttontype="push" fill="both" name="0"> </button>
 <button buttontype="push" fill="both" name="#"> </button>
 </tr>
</table>

Top Level Attributes
Top level attributes can be added to any of the container tags listed in the Layout/Container Tags, but
only if that container is the uppermost container in the source code. The source code can be found when
you enter PanelBuilder Edit Mode, and double-click on an empty spot of the canvas. This opens the

http://docs.oracle.com/javase/8/docs/api/java/awt/GridBagLayout.html

DashBoard CustomPanel Development Guide ogScript Reference • 117

Component Editor, with the uppermost container selected in the tree view (typically an <abs>
container in a new CustomPanel file). You can add the top level attributes in the uppermost container.

The following top level attributes are supported:

Attribute Description
editlock Allows a panel to be protected with a user-defined defined password.

When a user tries to enter Panel Builder Edit Mode, the password prompt
will appear requesting the credentials.

encrypt Encrypts a panel to protect the source code.

gridsize Allows you to snap components to the grid backdrop when in
PanelBuilder Edit Mode. You can organize and automatically line up
components on the screen along the provided horizontal and vertical grid
lines.

keepalive When set to true, this flag prevents panels from being unloaded by the
memory manager. When set to false, if this panel is inactive and
DashBoard runs low on memory it can be unloaded.

editlock
Defines the password that will protect a panel from tampering. The editlock value can be any user-
defined string. When editlock is set, a password popup will appear when a user attempts to enter
PanelBuilder Edit Mode.

To set an editlock password, enter PanelBuilder Edit mode, and double-click on an empty area of the
canvas. The Component Editor will open with the uppermost <abs> selected in the tree view. Click the
Source tab, and edit the top line of code to include editlock = "<password>".

Warning: Anyone can open the panel .grid file in any text editor and view the password, unless your
panel is encrypted. For more details on how to encrypt your panel see, encrypt.

You can see an example below with the password set to RossVideo12345.

Syntax
<abs contexttype="opengear" id="_top" editlock="RossVideo12345" style="">

</abs>

encrypt
This allows you to encrypt a panel so that the source code cannot be viewed. It is recommended to
encrypt passwords when using the editlock attribute. To encrypt a panel so that the source code cannot
be viewed, add encrypt= "SimpleEncrypt" to the uppermost <abs>. The editlock tag must be set to
"SimpleEncrypt".

Warning: make sure to use the correct capitalization, as setting encrypt to any other value may break
your panel!

You can see an example below using the encrypt tag.

118 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
<abs contexttype="opengear" id="_top" encrypt="SimpleEncrypt" style="">

</abs>

gridsize
This Snap to Grid feature allows you to snap components to the grid backdrop when in PanelBuilder
Edit Mode. You can organize and automatically snap components to the nearest horizontal and vertical
grid lines. With the CustomPanel open, enter PanelBuilder Edit Mode. When adding a new component
to the canvas, or resizing an existing component, it will auto-fill to encompass the closest grid space. To
enable Snap to Grid, right-click on the blank canvas and select Snap to grid.

The default grid size is set to 20. You can adjust the size of the grid in the source code to make the grid
larger or smaller, as shown below:

You can see an example below using the gridsize tag.

Syntax
<abs contexttype="opengear" id="_top" gridsize="10" style="">

</abs>

keepalive
When DashBoard runs low on memory, it may unload panels that are not active, in order to free up
memory. If you have a panel that runs tasks in the background (listeners, gpi triggers, timers, etc), you
may not want DashBoard to unload your panel. You can use the keepalive flag in the top-level
container>, to indicate that this panel should not be unloaded. For more details, see the Memory
Manager feature in the Dashboard User Guide.

Note: Panels without this flag cannot be unloaded.

Tip: From the PanelBuilder Component Editor, in the Abs Attributes tab, you can select the Keep
Alive checkbox to ensure panel is not unloaded.

Syntax
<abs contexttype="opengear" id="_top" keepalive="true" style="">

</abs>

DashBoard CustomPanel Development Guide ogScript Reference • 119

Widget Tags
Widget tags are components that can be added to an OGLML page. In contrast with the Container tags
described previously, widget tags do not contain other components.

The following tags are provided:

Tag Description
reveal Brings hidden tab pages to the front

drawer Creates a container that allows you to add drawer tabs to maximize panel
space, by organizing additional content in hidden drawer tab

ext Opens the editor for a specified node in the DashBoard Tree

exit Creates an exit button that, when clicked, causes DashBoard to close the
current panel, window, or application

help Creates a help pop-up button which can display a custom help title and
message when selected

image Displays a static image

label Creates a static text label

button Creates a button

browser Creates a web browser window

blank Placeholder, used to leave a blank cell in simplegrid, table and flow
containers

lock Allows DashBoard client screen to be locked

memory The memory manager widget allows you to add a memory status
indicator bar to monitor the current memory usage of the DashBoard
application

widget Creates an instance of a custom widget

wizard You can create a basic wizard, that is also customizable using script

webcam Displays a webcam video feed

NDI Displays an NDI video feed with audio.

drawer
If space is limited on your custom panel, you can now create drawers to make additional space for
content. This is ideal for smaller panels with restricted space, such as the Ultritouch custom panel, or
any panel that is crowded with too many components. It can help to organize your content,
compartmentalize standalone functions, or to minimize certain parts of the custom panel when it is not
in use.

You can see an example of an Ultritouch Panel with drawers below:

It is recommended that you create the drawer using the Tab Split & Drawer button that can be found in
Panel Builder Edit Mode toolbar.

For more information, see the DashBoard User Guide > Panel Builder > Adding basic Components >
Drawers.

120 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
<drawer name="drawer-name", targetid="element1,element2,...">

 <abs> name= <abs>

<drawer height="380" left="163" tabfill="both" top="141" width="538">

 <abs anchor="drawer-tab-name" height="48" id="north1" name="north1"
width="249"/>

 </drawer>

<drawer height="380" left="163" tabfill="none" top="141" width="538">

 <abs anchor="east" height="48" id="north1" name="north1" width="249"/>

</drawer>

wizard
You can create wizards that contain a title, a page navigation pane, and a progress bar. The wizard
allows you to automate complex tasks and break them into a series of steps that walk users through the
process from start to finish.

In addition to determining which features you would like to be visible, you can also choose how many
pages appear in the wizard. Pages are shown as Page 1, Page 2, and so on. It's easy to change the default
page name to be more descriptive, since the navigation pane already provides automatic numbering on
each tab. For example, "Page 1" could be renamed "Device Options" and that tab will display "1. Device
Options" in the navigation pane, as shown below.

reveal
Creates a button that, when clicked, causes elements within tab pages to become visible in the UI.
When the button is pressed, DashBoard finds all components with the provided target ID(s) and checks
to see if they are contained within a tab component or menugroup. If component is found, its tab page
is brought to the foreground (made the active tab). If the specified component is buried deep within the
UI (e.g. a tab within a tab), the device must supply multiple IDs to ‘reveal’ the desired component and
the component’s parents.

Syntax
<reveal name="button-name" targetid="element1,element2,...">

</reveal>

DashBoard CustomPanel Development Guide ogScript Reference • 121

Attributes
In addition to General Attributes, the following attributes may be specified to the <reveal> tag:

Attribute Values Restrictions Description
name String The name to display on the button.

targetid list of Strings
separated by
commas or
semicolons.

Each string in the
value must refer
to the id of
another
component.

Specifies the element ids to show.

Examples
The following example creates a button that reveals the menu with id “Key1Panel”
<reveal name="Key 1" targetid="Key1Panel"/>

The following example creates a button that reveals the menu “Key1Panel” and the tab
“Key1ChromaTab”.
<reveal name="Chroma Key 1" targetid="Key1Panel,Key1ChromaTab"/>

ext
Creates a button that, when clicked, causes DashBoard to open an editor tab for a device in the
DashBoard tree view. When the button is pressed, DashBoard searches its tree view for a node with the
provided ID. If a node is found and the node contains an editor, its editor is opened and/or brought to
the foreground (made the active tab).

If a component is buried deep within the UI (e.g. a tab within a tab), the card can supply multiple IDs to
‘reveal’ not only the desired component, but also the component’s parents.

Syntax
<ext name="button-name" objectid="node-id" buttontype="type" general
attributes/>
<ext name="button-name" objectid="FileNavigator,file-path,file-name"
buttontype="type" general attributes/>

Attributes
In addition to General Attributes, the following attributes may be specified to the <ext> tag:

Attribute Values Restrictions Description
name String The name to display on the button.

objectid String The value must
refer to the node
ID an element in
DashBoard’s tree
view.

Specifies the id of the components to
show.
DashBoard provides a few shortcuts to
reference elements under the device
node in the tree or a sibling device in the
same frame:
%frame% will be replaced with the
frame’s primary identifier.
%device% will be replaced with the
device’s primary identifier.
%slot 1 (or 2, or 3, etc.)% will be
replaced with the primary identifier of the
device in the referenced slot in the same
frame.
If the String starts with
“FileNavigator,” the objectid
specifies a path and filename of a
resource in the DashBoard file navigator,

122 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
rather than the tree view.

buttontype button
label

Optional “button” = display the link as a button
“label” = display the link as a label

Default values shown in bold.

exit
Creates an exit button that, when clicked, causes DashBoard to close the current panel, window, or
application. If a message prompt is defined, then a Yes or No message prompt pop-up will appear when
the button is pressed. An example of an exit button with a prompt set would be: prompt=“Do you wish
to exit this panel?”.

If you set the exit button to close a panel when pressed, additional options are available to set
DashBoard to jump to another device user interface from the tree view, or Custom Panel file. When the
button is pressed, DashBoard searches its tree view for a node with the provided ID. If a node is found
and the node contains an editor, its editor is opened and/or brought to the foreground (made the active
tab).

Syntax
<exit name="button-name" level= "panel|window|application" openobjectid=
"node-id" prompt="Exit-prompt-message" general attributes/>
<exit name="button-name" level= "panel" openobjectid="FileNavigator,file-
path,file-name" buttontype="type" prompt="Exit-prompt-message" general
attributes/>

Attributes
In addition to General Attributes, the following attributes may be specified to the <ext> tag:

Attribute Values Restrictions Description
name String The name to display on the button.

level String The level can be set to one of the
following: panel, window or
application. Where:

• panel closes the current panel.
• window closes the current

window.
• Application closes the

DashBoard application.
Note: Setting level to window can also
result in exiting the DashBoard
application if only one window is open
when the button is pressed.

objectid String The value must
refer to the node
ID an element in
DashBoard’s tree
view.

Specifies the id of the components to
show.
DashBoard provides a few shortcuts to
reference elements under the device
node in the tree or a sibling device in the
same frame:
%frame% will be replaced with the
frame’s primary identifier.
%device% will be replaced with the
device’s primary identifier.
%slot 1 (or 2, or 3, etc.)% will be
replaced with the primary identifier of the
device in the referenced slot in the same

DashBoard CustomPanel Development Guide ogScript Reference • 123

Attribute Values Restrictions Description
frame.
If the String starts with
“FileNavigator,” the objectid
specifies a path and filename of a
resource in the DashBoard file navigator,
rather than the tree view.

prompt If you want a message prompt to appear
to confirm whether to exit the panel,
application or window, add the following:
prompt=“your-message-text”

When defined, the message you have
entered appears in a Yes or No pop-up
dialog.

buttontype button
label

Optional “button” = display as a button
“label” = display as a clickable label

Default values shown in bold.

help
Creates a help pop-up button which can display a custom help title and message when selected.

Syntax
<help control attributes>
 <![CDATA[<html>Html text</html>]]>
</help>

Control Attributes
In addition to General Attributes, the following attributes may be specified to the <help> tag:

Attribute Values Restrictions Description
popupwidth Integer Specifies the width of the popup content,

in pixels.

popupheight Integer Specifies the height of the popup
content, in pixels. This does not include
the title.

Title String The title to display in the popup.

Message String Can be plain text
or html.

The message to display in the popup.

Default values shown in bold.

Examples
The example code below creates a 40 by 40 pixel help pop-up, as shown in Figure 70.
<help height="40" left="25" top="25" width="40" popupheight="200"
popupwidth="500" style="bg#ff0000;" title="Example Help">
<![CDATA[<html><left><u>Html formatted heading</u>
<font
color=#ffffdd>Take me Home
Ross Video

The latest software release for Carbonite Black Solo unlocks a powerful USB
Media Player functionality and is available to customers at no additional
cost. This new media player provides the functionality of a single-channel
clip player, for playout of compressed MPEG-4 AVC media directly from a
connected USB-media drive. There is no other production switcher in the world

https://www.rossvideo.com/

124 • ogScript Reference DashBoard CustomPanel Development Guide

with this level of built-in media playback.

</html>]]>

</help>

Figure 73 – Example Help Dialog

image
Fetch an image from the provided URL and display it.

Syntax
<image src="URL-String" attributes> </image>

Attributes

Attribute Values Restrictions Description
src URL String Required. Must

be a fully
qualified URL.

Set the background image of the
component.

height
top
bottom

Integers It top and bottom are both specified, or
height is specified, the image will be
stretched to the height specified.
Otherwise, the image’s native height is
used.

width
left
right

Integers It left and right are both specified, or
width is specified, the image will be
stretched to the width specified.
Otherwise, the image’s native width is
used.

Examples
The following example places an image at its native size:
<image src="http://whatever.com/logo.jpg" top="50" left="50"/>

The following example places an image and scales it to 200x100 pixels in size.
<image src="http://whatever.com/logo.jpg" top="50" left="50" height="100"
width="200"/>

label
Display a label. If the name is not defined, the text content of the label is used to provide the content.
One or more ogScript tasks can be attached to a label to be fired when the label is clicked.

DashBoard CustomPanel Development Guide ogScript Reference • 125

Syntax
<label name="label-name" attributes> </label>

Attributes

Tag Values Restrictions Description
name String The text to display in the label.

align left
right
center

 The horizontal alignment of the text
within the label.

header true
false

 Format the label as a header element
(apply a standard header background,
foreground, and border).

html true
false

 The text is actually a snippet of HTML
(you do not need to provide the
<html></html> tags).

Default values shown in bold.

Examples

<label name="This is a label" />

<label html="true" name="This is an <i>HTML</i> label"/>

<label header="true" name="Label with the header attribute" />

Figure 74 – Label Examples

button
Display a button. One or more ogScript tasks can be attached to a button to be fired when the button is
pressed or toggled.

Syntax

<button name="label-name" attributes> </button>

Attributes

Attribute Values Restrictions Description
name String Required The text to display in the label.

buttontype push
toggle
checkbox
radio

 The type of button to create. Push
buttons are stateless. Toggle, checkbox,
and radio are all 2-state - “on” and “off”.

toggled true
false

 The initial state of the button.

flat true
false

Only applicable to
push or toggle
buttontype

Request a ‘flat’ look for the button (or
toggle button) in the UI. Note that icons
styles may not be applied to flat buttons.

Default values shown in bold.

126 • ogScript Reference DashBoard CustomPanel Development Guide

Examples
This example displays a series of simple pushbuttons as illustrated in Figure 75:
<button buttontype="push" name="push" top="25" width="80"/>
<button buttontype="toggle" name="toggle" toggled="true" top="25"
width="80"/>
<button buttontype="push" flat="true" left="400" name="flat" top="25"
width="80"/>
<button buttontype="radio" left="500" name="radio" top="25"/>
<button buttontype="checkbox" left="600" name="checkbox" top="25"/>

Figure 75 – Button Examples

browser
Embed a web browser component in the page and point it at the specified URL.

Note The browser plug-in is a heavy widget, and should therefore be used sparingly.

Syntax
<browser fallback="true” type="String” url="URL-String" height="height"
width="width" attributes >

</browser>

Attributes

Attribute Values Restrictions Description
url URL String Required. Must

be a fully
qualified URL.

The URL to use for the provided
browser.

width Positive integer Required The width (in pixels) of the browser.

height Positive integer Required The height (in pixels) of the browser.

type String Optional Specifies the browser engine being
used.
The default selection is “default”.

fallback true
false

Optional When enabled, the fallback browser type
will be used if the selected browser type
is unsupported.
The default selection is “true”.

Notes
The browser type options provided are the following:

• Default

• Chromium

• System

• JavaFX

Note that if supported, the default browser type Chromium will be used.

The system browser will depend on the OS.

DashBoard CustomPanel Development Guide ogScript Reference • 127

• On Windows it will generally be Internet Explorer.

• On Linux it will be XUL Runner.

• On Mac it will be Mozilla.

The web sites pointed to by the browser must NOT contain Java Applets.

Not all plug-ins will be available on all browsers. It is recommended that developers test their web
pages inside of DashBoard on multiple platforms.

The browser is a heavyweight component and must not be used inside of a scrolling component.

The browser will cause rendering issues if it is clipped by other components.

Example
<browser fallback="true" height="360" left="1240" top="500" type="javafx"
url="https://google.ca" width="360"/>

blank
Creates a blank placeholder component. This can be used to fill space where necessary.

Syntax
<blank attributes />

Attributes
See General Attributes.

Example
<table left="25" top="25" width="400">

<tr>
<label name="This" width="100"/>
<label name="is" width="100"/>
<label name="a" width="100"/>
<label name="table" width="100"/>

</tr>
<tr>

<label name="with" width="100"/>
<blank/>
<label name="blank" width="100"/>
<label name="tags" width="100"/>

</tr>
</table>

Figure 76 – Blank Tag Example

lock
Creates a button that, when pressed, will turn on DashBoard’s screen lock. The lock button will display
a lock icon by default but this icon can be overridden by a card developer.

Syntax
<lock name="button-name" attributes />

128 • ogScript Reference DashBoard CustomPanel Development Guide

Attributes
See General Attributes.

Attributes Values Restrictions Description
name String Text to display on the button. Text will be

rendered beside the lock icon.

Example
<lock name="Lock Screen" left="25" top="25"/>

Figure 77 – Lock Button

When locked, the DashBoard UI will be darkened, with an unlock widget.

Figure 78 – Lock Screen Widget

memory
The memory manager widget allows you to add a memory status indicator bar to monitor the current
memory usage of the DashBoard application. This performs the same function as the memory manager
indicator that is available in the top right DashBoard toolbar. The memory manager widget allows you
to continue to monitor the memory usage of the status indicator while a panel is in full screen mode.
You can add a memory manager widget directly to your panel and customize its size and position. By
default the <memory/> tag is 60 pixels in width by 20 pixels in height, and it is located in the top left
corner.

Syntax
<abs contexttype="opengear" id="_top" keepalive="false" style="">

 <memory height="50" left="1500" top="50" width="200"/>

</abs>

A memory manager widget appears in the specified area.

Figure 79 – Lock Screen Widget

Attributes Values Restrictions Description
id String Widget identifier.

height String Height of the memory manager widget.

DashBoard CustomPanel Development Guide ogScript Reference • 129

Attributes Values Restrictions Description
width String Width of the memory manager widget.

left String Offsets the memory manager widget a
select number of pixels from the left side
margins of the panel.

right String Offsets the memory manager widget a
select number of pixels from the right
side margins of the panel.

top String Offsets the memory manager widget a
select number of pixels from the top
margins of the panel.

bottom String Offsets the memory manager widget a
select number of pixels from the bottom
margins of the panel.

widget
Creates an instance of a custom widget. The widget must be defined through a widgetdescriptor
tag. Parameters declared within the widgetdescriptor’s config block may be overridden through
param tags within a config block.

Syntax
<widget widgetid="widget-id" baseOID="base-oid">
 <config>
 <params>

<param/>

<param/>

 . . .
<params/>

 </config>
</widget>

Attributes
In addition to General Attributes, the following attributes may be specified to the <widget> tag:

Attributes Values Restrictions Description
widgetid String Must match the

id of a declared
widgetdescriptor.

Widget identifier.

baseOID String Specifies the base OID string for relative
parameter access. Relative parameter
access within the widget will be prefixed
with the value of the baseOID attribute
string.

130 • ogScript Reference DashBoard CustomPanel Development Guide

See Also
• widgetdescriptor

• config

• param

Examples
The following example displays a custom widget with id alarmgrid:
<widget widgetid="alarmgrid" top="100" left="100"/>

The following example displays a custom widget with id alarmgrid, overriding the value of
parameter str2 with the value “New String Value”:
<widget left="100" top="300" widgetid="alarmgrid">
 <config>
 <params>
 <param oid="str2" value="New String Value"/>
 </params>
 </config>
</widget>

DashBoard CustomPanel Development Guide ogScript Reference • 131

webcam
Embed a webcam video feed in the page.

Syntax
<webcam fillmode="String" height="height" mirror="false" resolution="String"
sourceName="String" width="width"/>

Attributes

Attributes Values Restrictions Description
fillmode None

Fill
Fit

 Specifies how the webcam video feed is
displayed within the widget.

height String Height of the webcam video feed widget.

width String Width of the webcam video feed widget.

mirror true
false

 When enabled, mirrors the webcam
video feed within the display.

resolution String The specified resolution for the webcam
video feed displayed.

sourcename String Name of the source for the webcam
video feed.

Example
The following example places an image at its native size:
<webcam fillmode="FIT" height="295" mirror="false" resolution="176x-144"
sourceName="Integrated Webcam" width="443"/>

NDI
Embed an NDI video feed with audio in the CustomPanel.

Syntax
<ndi srcname=”String” src=”String” canvas="boolean" fill="String"
normalization="20,20" quality="String" showimagesize="boolean"
showname="boolean" showsrc="boolean" showtimecode="boolean"
tallystate="String" window="10,10,20,20"/>

Attributes

Attributes Values Restrictions Description
sourcename String Only sources

detected by the
application
should be used.

Name of the source for the NDI feed.

src String Optional: Use the IP or URL instead of
using a detected NDI source name.

canvas true
false

 Adds enhancements to the NDI video
and NDI audio.

fill fit
crop
both

 Specifies how the NDI video feed is
displayed within the widget.

132 • ogScript Reference DashBoard CustomPanel Development Guide

Attributes Values Restrictions Description
normalization String Sets the normalization for the NDI feed.

quality low
high

 Specifies the quality of the NDI video
feed.

showImageSize true
false

 Displays the image size in the widget.

showName true
false

 Displays the source name in the widget.

showsrc true
false

 Displays the source URL or IP in the
widget.

showTimeCode true
false

 Displays the time code size in the
widget.

tallystate off
preview
program
both

 Specifies the on-air status of the NDI
video feed.

window String Displays the NDI feed in a sub window of
the widget.

Non-UI Tags
The following tags do not provide any UI elements themselves. They contribute new parameters, script
snippets, constraints, etc. for use elsewhere in the OGLML document.

The following tags are provided.

Tag Description
api Provides a location for global ogScript code.

context (device context) A device context is a data structure that contains information about the
attributes of a device data source.

meta This is a convenient parent tag for all non-UI tags.

subscription This tag indicates the list of subscription oids that the panel wishes to
receive parameter updates from the OGP JSON device.
Note: The device source must support subscriptions protocol.

widgets This is a container for user-defined widget descriptors.

widgetdesriptor Defines a custom widget.

lookup A lookup defines constants to be substituted inside of other tag attributes
or used in ogScript blocks.

style To provide something similar to Cascading Style Sheets (CSS) available
in HTML, styles can be defined in a tag and referenced in the style
attribute of widget tags.

color Defines or overrides a color constant for use within style hints.

ogscript Defines an ogScript code snippet to handle an event on a UI element or
parameter.

constraint Defines the constraint of a parameter.

params The parent container for parameters defined within the OGLML
document.

DashBoard CustomPanel Development Guide ogScript Reference • 133

Tag Description
timer The timer tag fires events at regular intervals.

listener The listener tag allows an OGLML page to process network
communications using protocols not already available.

task Defines a block of ogScript to be run when an event happens in the
system.

timertask Defines a block of ogScript to be run when a timer goes off.

include This tag allows an OGLML document to be assembled from several
individual XML files or fragments.

api
Provides a location for global ogScript code. Contents of the <api> tag are processed by the ogScript
compiler directly. Elements within an api tag are scoped where they are declared in the XML; siblings
and children of siblings have visibility to elements declared within the api tag.

You can use the <api> tag to create a library of reusable ogScript code segments. For more information
and best practices, see Custom APIs Within CustomPanels.

The api tag should generally be placed within a <meta> tag for global ogScript code encapsulation.
However, ogScript code intended to dynamically generate and modify the XML should be placed in a
top-level api tag.

Syntax
<api>

 global-scope elements

</api>

Attributes
None.

context (device context)
A device context is a data structure that contains information about the attributes of a device. It provides
a means to organize the OGLML document structure of the DashBoard CustomPanel. Typically this tag
is used if a CustomPanel (also called a device panel elsewhere) is used to add more than one data source
to the panel.

Basic Syntax
<context contexttype="opengear" objectid="Daves_Ultritouch...">

</context>

Syntax for Panels that Support Subscriptions
<context contexttype="opengear" objectid="DeviceID..." subscriptions="true">

 <meta>

 <subscription oids="oid1, oid2, oid3*"/>

 </meta>

</context>

134 • ogScript Reference DashBoard CustomPanel Development Guide

Example of a Subscriptions Panel with Two Device Contexts
<abs contexttype="opengear" id="_top" keepalive="false" objectid="MyUltritouch..."
objecttype="Ultritouch Device">

 <context contexttype="opengear" objectid="Kyles_Ultritouch..." subscriptions="true">

 <meta>

 <subscription oids="db.touch*,deviceoptions.speakervolume"/>

 </meta>

 </context>

 <context contexttype="opengear" objectid="Daves_Ultritouch..."
subscriptions="true">

 <meta>

 <subscription oids ="devices*, deviceoptions.lcdbrightness"/>

 </meta>

 </context>

</abs>

In this example, you can see two separate device contexts, which point to two different Ross Ultritouch
devices that support subscriptions protocol. The topmost container for the panel, in this case an <abs/>
does not need to be modified to add device contexts.

Attributes

Attribute Values Restrictions Description
contexttype string Typically set to opengear for openGear

or DashBoard Connect devices.

objectid string Object ID provided by DashBoard.

subscriptions String set to
"true" or "false".

*This attribute
must be set to
"true" to support
OGP devices that
support the
subscription
protocol.

This flag is required to indicate support
for subscriptions devices that are used
as a data source in this panel.

Note: The panel must also provide a list
of subscription OIDs to determine
which device parameters the panel will
always receive updates for.

subscription
This tag indicates the list of subscription oids that the panel wishes to receive parameter updates from
the OGP JSON device.

Note: The device source must support subscriptions protocol. This tag only works when used in
conjunction with the subscriptions="true" attribute.
Syntax
<context contexttype="opengear" objectid="DeviceID..." subscriptions="true">
 <meta>
 <subscription oids="oid1, oid2, oid3*"/>
 </meta>
</context>

Attributes

DashBoard CustomPanel Development Guide ogScript Reference • 135

Attribute Values Restrictions Description
oids String of

comma
separated OIDs

*Required to
support OGP
devices that
support the
subscription
protocol.

The list of OID parameters for the
openGear device source must be listed
here, otherwise the panel will only get
updates for the minimal set of OIDs.

Note: This tag can only be added to a
CustomPanel that indicates support for
subscriptions="true" in the
context or top level attributes of the
panel. It is recommended to nest the
subscription oid list within a meta tag.

See the details below for more
information wildcards.

Note: You can use wildcard asterisks to include multiple OIDs simultaneously that have the same
starting prefix in the name. The wildcard should be added after this prefix. These wildcards are useful
when you don't want to type out a whole list of similar OIDs manually. Instead you can add a subset of
OIDs by including a wildcard. If wildcards are used, your list of subscriptions are optimized by
DashBoard to use the wildcard that includes the most items.

About Using Wildcards

Adding a wildcard asterisk to a list of parameter OIDs in a DashBoard device panel, will allow you to
quickly add multiple sets of parameter OIDs that start with the same prefix. You can only add an
asterisk to the end of an oid prefix name. The asterisk means that you will subscribe to all parameters
that start with the prefix you entered.

For example, if you wanted to add three OIDs, types.audiomixer, types.audiomixerpartition and
types.audiosound, you could use the following wildcards: ty*, types.audio*, or types.au*. If you use
more than one wildcard that applies to the same parameters, DashBoard will choose the most efficient
wildcard to optimize. In the example above, ty* would be used. You cannot add a wildcard before the
prefix or have text after the wildcard. For example, *ypes. and ty*p are not valid.

For related content, see: context (device context), subscriptions, meta

meta
This is a convenient parent tag for all non-UI tags. The meta tag does not deepen the scope, therefore
children of the meta are considered at the same scope as the meta tag itself, and therefore siblings of
other top-level tags.

Syntax
<meta>

 non-ui-tags

</meta>

Attributes
None.

widgets
This is a container for user-defined widget descriptors.

Syntax

136 • ogScript Reference DashBoard CustomPanel Development Guide

<widgets>

<widgetdescriptor/>

<widgetdescriptor/>

 . . .

</widgets>

Attributes
None.

widgetdescriptor
Defines a custom widget. The widget descriptor contains two blocks denoted by <config> and
<oglml> tags. The config section includes content to render the widget’s configuration page within
PanelBuilder’s Edit Component dialog. The oglml block contains the content to create the widget
itself.

The widgetdescriptor tag may be contained within a widgets block of an oglml document, in an
external file or be served up via URL

Syntax
<widgetdescriptor id="widget-id" baseurl="URL-string"
structtype="structtype">
 <config/>
 <oglml/>
</widgetdescriptor>

DashBoard CustomPanel Development Guide ogScript Reference • 137

Attributes

Attributes Values Restrictions Description
id String Must be unique Widget identifier.

structtype String Specifies a dependency of the widget
upon a global struct parameter with
matching structtype. Currently this type
checking is restricted only to
PanelBuilder UI; a custom widget will
only be available in PanelBuilder if a
parameter exists with matching
structtype.

baseurl String Must be a valid,
fully qualified
URL.

When specified, the widget descriptor
will be fetched from a document
specified by the URL, rather than inline.

See Also
widget

config

param

Examples
The following creates a custom widget which displays four alarm dots in a 2x2 grid. The strings that sit
beside each dot are configurable parameters of the widget.
<widgetdescriptor id="alarmgrid">
 <config>
 <params>
 <param access="1" type="STRING" oid="str1" name="String 1"/>
 <param access="1" type="STRING" oid="str2" name="String 2"/>
 <param access="1" type="STRING" oid="str3" name="String 3"/>
 <param access="1" type="STRING" oid="str4" name="String 4"/>
 </params>
 </config>
 <oglml>
 <simplegrid cols="2" rows="2">
 <param oid="str1" widget="12" width="200" height="40"/>
 <param oid="str2" widget="12" width="200" height="40"/>
 <param oid="str3" widget="12" width="200" height="40"/>
 <param oid="str4" widget="12" width="200" height="40"/>
 </simplegrid>
 </oglml>
</widgetdescriptor>

The following retrieves a widget descriptor from a web server:
<widgetdescriptor baseurl="http://mydevice/files/widgets.widgetdescriptor"/>

The widget is then displayed with the following:
<widget widgetid="alarmgrid" top="100" left="100"/>

138 • ogScript Reference DashBoard CustomPanel Development Guide

The following example displays the widget, overriding the value of parameter str2 with the value
“New String Value”:
<widget left="100" top="300" widgetid="alarmgrid">
 <config>
 <params>
 <param oid="str2" value="New String Value"/>
 </params>
 </config>
</widget>

lookup
A lookup defines constants to be substituted inside of other tag attributes or used in ogScript blocks.
Lookups contain “entry” tags to define key/value pairs. Constants defined in a parent context can be
referenced in a child context. If a key from the parent context is re-defined in a child context, the re-
defined value will take precedence in the child’s scope.

Global lookup tags should usually be placed within an api tag.

Syntax
<lookup id="id-string" scope="scope">
 <entry key="key">value</entry>
 <entry key="key">value</entry>
 . . .
</lookup>

Attributes

Attribute Values Restrictions Description
scope private

public
window

If “private”, the
lookup must
define the id
attribute.

By default, all key/value pairs are added
to a general lookup table. The lookup
table in any context is the concatenation
of all parent lookup tables and sibling
lookup tables.
If the scope is set to “private”, the
key/value pairs can only be referenced
using the lookup table’s ID.

id string If defined, key/value pairs for this lookup
can be referenced in ogScript using
“ogscript.getPrivateString(‘[id]’, ‘[key]’);”
Or substitute inside of other attributes
with %const[‘id’][‘key’]%

code true
false

 Must be set true if the lookup value
contains executable script.

multiline true
false

 Must be set true if lookup value contains
multi-line strings.

Default values shown in bold.

DashBoard CustomPanel Development Guide ogScript Reference • 139

Example
The following tag creates a public lookup
<lookup>

 <entry key="breakfast">Bacon and Eggs</entry>
 <entry key="lunch">BLT</entry>
 <entry key="dinner">Bacon explosion</entry>
 <entry key="snack">Bacon-maple donut</entry>
</lookup>

The following code returns the string BLT.
var currentMeal = ogscript.getString('lunch');

The following tag creates a private scope lookup
<lookup id="family" scope="private">
 <entry key="father">Homer Simpson</entry>
 <entry key="son">Bart Simpson</entry>
 <entry key="mother">Marge Bouvier-Simpson</entry>
 <entry key="daughter">Lisa</entry>
 <entry key="baby">Magaggie</entry>
</lookup>

The following code would return the string Homer Simpson.
var name = ogscript.getPrivateString('family', 'father');

The following tag creates a block of code lookup:
<lookup code="true" id="GlobalScripts" multiline="true">

<entry key="UpdateTimer">

if (params.getValue('Update_Automatically', 0) == 1)

{

 ogscript.getTimerManager().getTimer('UpdateTimer').startTimer(false);

}

else

{

 ogscript.getTimerManager().getTimer('UpdateTimer').stopTimer(false);

}

</entry>

</lookup>

The following is an example of instancing the code defined in the above lookup:
<ogscript handles="onload">%const['GlobalScripts']['UpdateTimer']%</ogscript>

140 • ogScript Reference DashBoard CustomPanel Development Guide

style
To provide something similar to Cascading Style Sheets (CSS) available in HTML, styles can be
defined in a tag and referenced in the style attribute of widget tags.

Syntax
<style id="style-name" value="value-string"/>

Attributes

Attribute Values Restrictions Description
id string Must not contain

a semicolon
The ID to use when referencing the
style.

value string Must not contain
any circular
references to
itself.

Value contains a style hint string
following the same format used in the
style attribute of other tags.

Examples
The following example applies button style hints as defined in the predefined style
CommandButtonStyle. Note that the “Stop” button has an additional hint applied (size:big), and
overrides the background color (bg#ff0000).
<style id="ButtonStyle" value="bg#808000;bdr:etched;"/>

<button name="Start" style="style:ButtonStyle;"/>

<button name="Stop" style="style:ButtonStyle;size:big;bg#ff0000;"/>

<button name="Reset" style="style:ButtonStyle;"/>

Figure 80 - Style Tag Example

color
Defines or overrides a color constant for use within style hints.

Syntax
<color id="color-name" value="color-value"/>

Attributes

Attribute Values Restrictions Description
id string The ID to use when referencing the

color.

value #RRGGBB
or

#color-constant
or

#RRGGBBAA

 Value contains a style hint string
following the same format used in the
color style attribute.

Example
The following example defines a color constant ColorBlue and applies it to the background of a button
widget.

DashBoard CustomPanel Development Guide ogScript Reference • 141

<color id="VibrantBlue" value="#0000FF"/>

<button name="Blue Button" style="bg#VibrantBlue"/>

ogscript
Defines an ogScript code snippet to handle an event on a UI element or parameter.

Syntax
<ogscript handles="eventType">
ogScript code
</ogscript>

Attributes

Attribute Values Restrictions Description
use online Script will only run on a real device

offline Script will only run on a file-based device

both Script will run always

targetid string The ID of the UI element to target.

handles Multiple “handles”
arguments can
be supplied,
separated by
commas.

The type of event that triggers the script.

attributechange Can be used to trigger scripts when
selected NK device is changed or
monitor status of FTP download/upload:

<ogscript
attribute="com.rossvideo.ftp.event"
handles="attributechange">var
progressEvent = event.getNewValue();
if (progressEvent == null)
{
 ogscript.debug('No progress');
}
else
{
 ogscript.rename('label.bytes',
(progressEvent.getTotalBytesTransferre
d() / 1024) + 'kb');
}</ogscript>

dragvalue Must specify something to return
(generally a string or a number) when
the element is dragged.

onaction Triggered when a button is pressed.

onchange Only supported
by tabs and
parameters.

Triggers script when parameter or tab is
changed.

onclick Triggers script when element is clicked.

onclose Triggered when the panel has been
closed (can be used for cleaning-up).

142 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
oncontextmenu Triggers script when the element is right-

clicked, or tapped and held.
To create a context menu, define an
array of menu options, each associated
with a segment of ogScript.
For more information, see Example of a
Context menu on page 143.

ondrag Triggers script when the element is
dragged

ondrop Triggers script when another component
is dropped on the component.

onkeypress Triggers script when the component has
focus and a keyboard key is pressed.

onkeyrelease Triggers script when the component has
focus and a keyboard key is released.

onlassoout Triggers script when a lassostart
operation has started and the
component with the selected ID is no
longer inside of its bounding rectangle.

onlassoover Triggers script when a lassostart
operation has started and the
component with the selected ID is inside
of its bounding rectangle.

onlassostart Triggers script when the user clicks and
starts to drag a ‘lasso’ rectangle.

onlassostop Triggers script when a lasso rectangle
that is being dragged stops (see the
Ultrix UI with the physical view of the
frame for an example).

onload Triggered when the panel has finished
loading or is reloaded

onmousedown Triggers script at onmouse click down
event.

onmouseenter Triggers script when the pointer moves
over the component.

onmouseexit Triggers script when the pointer leaves
the component.

onmouseup Triggers script on mouse click up event.

onmousemove Triggers script when mouse moves over
component

onmouseup Triggers script when the mouse is
released after having been pressed
while pointing to the component.

onresize Triggers script when the component is
resized.

oid Positive integer Must be a defined
OID.

Only applies to
“onchange”

The OID of the parameter to target.

For more information, see Example of
Wildcards with OID Attributes in ogscript
tag.

DashBoard CustomPanel Development Guide ogScript Reference • 143

Attribute Values Restrictions Description
element List of array

indices
separated by
commas

All array
elements
referenced must
exist in the
parameter value.

Only applies to
“onchange”

By default, all elements of an array
parameter are targeted. This attribute
can be used to return a subset of the
array. If a list is provided, only the
elements at the provided indices are
returned (note- you can specify the
elements in any order).

This value must be “0” for a non-array
parameter.

script ogScript Can also be the
text content of the
<ogscript> tag.

The script to run when triggered by any
of the events listed in “handles”.

Note: Default values are shown in bold.

Example of a Context Menu
In this example, an <ogscript> tag uses the oncontextmenu event handler to present a menu of
options to the user. The menu also includes submenu options. The target is a label with
id="myMenuLabel".

When the user right-clicks or taps and holds the label, the menu options appear. When the user clicks or
taps a menu option, the function associated with that option is called. In this example, the functions
output messages to the openGear debug console.

The following figure shows the context menu fully expanded, and the messages that appear in the
openGear debug console when the user selects each menu option.

144 • ogScript Reference DashBoard CustomPanel Development Guide

The following code produces the context menu shown above:
<abs contexttype="opengear" style="fg#foreground;">

 <meta>

 <ogscript handles="oncontextmenu" targetid="myMenuLabel">var
myContextMenu = {};

myContextMenu["First Option"] = function()

{

 ogscript.debug("First Option was selected");

};

myContextMenu["Second Option"] = function()

{

 ogscript.debug("Second Option was selected");

};

myContextMenu["Sub Menu Stem"] = {};

myContextMenu["Sub Menu Stem"]["Sub Menu Option 1"] = function()

{

 ogscript.debug("Sub Menu Option 1 was selected");

};

myContextMenu["Sub Menu Stem"]["Sub Menu Option 2"] = function()

{

 ogscript.debug("Sub Menu Option 2 was selected");

};

return myContextMenu;</ogscript>

 </meta>

 <label height="60" id="myMenuLabel" left="21" name="Label with Menu
Options (right-click):" style="txt-
align:center;bdr:line;bdr#selectbg;bg#listbg;fg#foreground;" top="25"
width="275"/>

</abs>

Example of Wildcards with OID Attributes in ogscript Tag
From DashBoard version 9.15 onwards, the oid attribute in ogscript supports wildcards only for the
params onchange event, enabling tasks to be triggered on multiple parameters which share an OID
pattern. For struct parameters, the wildcard should be placed after the dot. This helps identify whether
OIDs are indexed or not. For non-indexed OIDs, the wildcard just goes in the middle.

Some examples of using wildcards with OID attributes in ogscript tag are:
<ogscript handles="onchange" oid="colors.*">var oid =
this.getOid().toString();ogscript.debug(oid);</ogscript>

<ogscript handles="onchange" oid="*.r">var oid =
this.getOid().toString();ogscript.debug(oid);</ogscript>

<ogscript handles="onchange" oid="users.*.pets.*">var oid =
this.getOid().toString();ogscript.debug(oid);</ogscript>

DashBoard CustomPanel Development Guide ogScript Reference • 145

constraint
Defines the constraint of a parameter. The structure of this object depends upon the constrainttype of
the parameter. Range constraints are specified as an attribute of a param tag; Choice, Alarm Table, and
Struct constraints are specified using constraint tags as children to the param object.

Constraints may be defined within a param declaration, or defined globally and referenced by specific
parameters.

Syntax
Constraints with inline constraint values:
<constraint constrainttype="ctype" constraint="cvalue" id="constraint-id" />

Constraints defined within a param tag with inline constraint values:
<param constrainttype="ctype" constraint="cvalue" param-attributes />

Choice and Alarm Constraints:
<param constrainttype="ctype" param-attributes>

 <constraint key-attributes>cvalue</constraint>
 <constraint key-attributes>cvalue</constraint>
 . . .

</param>

Choice and Alarm Constraints defined within a param tag:
<param constrainttype="ctype" param-attributes />

 <constraint key-attributes>cvalue</constraint>
 <constraint key-attributes>cvalue</constraint>
 . . .

</param>

See sections below for examples and syntax for each constraint type.

Constraint Types
Constraint Constraint Type Param Type
Unconstrained INT_NULL INT16_PARAM

INT16_ARRAY
INT32_PARAM
INT32_ARRAY

FLOAT_NULL FLOAT_PARAM
FLOAT_ARRAY

Range Constraint INT_RANGE
INT_STEP_RANGE

INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

FLOAT_RANGE
FLOAT_STEP_RANGE

FLOAT_PARAM
FLOAT_ARRAY

Integer Choice
Constraint

INT_CHOICE INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

String Choice Constraint STRING_CHOICE STRING_PARAM
STRING_ARRAY

Alarm Table ALARM_TABLE INT16_PARAM
INT32_PARAM

146 • ogScript Reference DashBoard CustomPanel Development Guide

Constraint Constraint Type Param Type
Constraint Reference ID_REFERENCE All

Structure STRUCT STRUCT_PARAM
STRUCT_ARRAY

Note If no constraint is specified for a parameter, it will be unconstrained by default.

Refer to the appropriate section below for definition of the constraint object for each constraint type.

constraint (Unconstrained)
Specifies that a parameter is unconstrained. All parameters are considered unconstrained by default if no
constraint is applied.

Syntax
<param constrainttype="constraint-type" attributes />

Attributes

Attribute Values Restrictions Description
constrainttype INT_NULL

param type:
INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

Parameter is unconstrained

FLOAT_NULL

param type:
FLOAT_PARAM
FLOAT_ARRAY

Examples
The following constraint specifies an integer to be unconstrained:
<param constrainttype="INT_NULL" name="Delay" oid="0x500"
type="INT16_PARAM"/>

constraint (Constraint Reference)
References a globally-defined constraint. A constraint may be specified globally in the <meta> block.
These globally-defined constraints may then by referenced by specific parameters.

DashBoard CustomPanel Development Guide ogScript Reference • 147

Syntax
<constraint id="constraint-id" constrainttype="constraint-type">

<param constrainttype="ID_REFERENCE" constraint="constraint-id" attributes />

Attributes

Attribute Values Restrictions Description
id String Unique identifier for this constraint

constrainttype Any valid
constraint type

Param type must
be compatible
with the
referenced
constraint.

See Constraint Types for valid constraint
types.

Examples
The following example creates a global constraint VideoFormat. Params 0x501, 0x502 and 0x503 are
all constrained using this constraint definition.
<constraint constrainttype="INT_CHOICE" id="VideoFormat">
 <constraint key="0">480i-59.94</constraint>
 <constraint key="1">576i-50</constraint>
 <constraint key="2">1080i-29.97</constraint>
 <constraint key="3">1080i-25</constraint>
 <constraint key="4">720p-59.94</constraint>
 <constraint key="5">720p-50</constraint>
 <constraint key="6">1080p-59.94</constraint>
 <constraint key="7">1080p-50</constraint>
</constraint>

<param constrainttype="ID_REFERENCE" constraint="VideoFormat" name="Vid1"
oid="0x501" type="INT16_PARAM"/>

<param constrainttype="ID_REFERENCE" constraint="VideoFormat" name="Vid2"
oid="0x502" type="INT16_PARAM"/>

<param constrainttype="ID_REFERENCE" constraint="VideoFormat" name="Vid3"
oid="0x503" type="INT16_PARAM"/>

constraint (Range Constraints)
Constrains a numeric parameter type to a specific range. Minimum and maximum values effect the
parameter’s valid range. Display minimum and maximum values scale the parameter value to a different
range for display purposes. Finally a step value can be set to constrain the minimum step size a value
may be changed by.

Syntax
Min / Max Constraint:
<param constraint="min;max;" constrainttype="constraint-type" attributes />

148 • ogScript Reference DashBoard CustomPanel Development Guide

Min / Max Constraint with Display-Min and Display-Max:
<param constraint="min;max;display-min;display-max;"
 constrainttype="constraint-type" attributes />

Min / Max Step Constraint:
<param constraint="min;max;step" constrainttype="constraint-type" attributes
/>

Min / Max Step Constraint with Display-Min and Display-Max:
<param constraint="min;max;display-min;display-max;step"
 constrainttype="constraint-type" attributes />

Attributes

Attribute Values Restrictions Description
constrainttype INT_RANGE

INT_STEP_RANGE
param type:
INT16_PARAM
INT16_ARRAY
INT32_PARAM
INT32_ARRAY

Type of constraint

FLOAT_RANGE
FLOAT_STEP_RANGE

param type:
FLOAT_PARAM
FLOAT_ARRAY

constraint min Required Minimum value to which a parameter
can be set

max Required Minimum value to which a parameter
can be set

display-min Optional; must be
used with
display_max.

The displayed value of the parameter
when the parameter has a value of
min. The default value is min.

display-max Optional; must be
used with
display_min.

The displayed value of the parameter
when the parameter has a value of
max. The default value is max.

step xxx_STEP_RAN
GE constraints
only

Smallest increment a value may be
changed by. Spinner widgets will
increment a parameter by the step
value. Note that the step increment is
applied to the parameter value, not
the display value.

Examples
The following example constrains a FLOAT_PARAM to [0,100]:
<param constraint="0.0;100.0;" constrainttype="FLOAT_RANGE" name="Delay"
oid="audio.delay" type="FLOAT_PARAM"/>

The following example constrains an integer to [0, 255] mapping it to a display range of [0, 100], and
the value increments by steps of 2:
<param constraint="0;255;0;100;2" constrainttype="INT_STEP_RANGE" name="Gain"
oid="key1.gain" type="INT16_PARAM"/>

DashBoard CustomPanel Development Guide ogScript Reference • 149

constraint (Integer Choice Constraints)
Choice constraints provide a list of possible values for a parameter, based upon a text selection. For
integer parameters, the parameter may only be assigned a value specified in the constraint.

Syntax
<param constrainttype="INT_CHOICE" type="param-type" attributes >
 <constraint key="choice1-key">choice1-value</constraint>
 <constraint key="choice2-key">choice2-value</constraint>
 . . .
</param>

Attributes

Attribute Values Restrictions Description
type INT16_PARAM

INT32_PARAM
INT16_ARRAY
INT32_ARRAY

 Parameter must be integer type.

key Integer Numeric assignment of current
enumerated choice.

value String Text name for the current enumerated
choice

Examples
The following constraint provides an enumerated choice:
<param constrainttype="INT_CHOICE" name="Channel" oid="0x503"
type="INT16_PARAM">
 <constraint key="0">Channel 01</constraint>
 <constraint key="1">Channel 02</constraint>
 <constraint key="2">Channel 03</constraint>
 <constraint key="3">Channel 04</constraint>
</param>

constraint (String Choice Constraints)
Choice constraints provide a list of possible values for a parameter, based upon a text selection. For
String parameters, the constraint provides a set of defaults, but the user may arbitrarily enter any other
value for the parameter.

Syntax
<param constrainttype="STRING_CHOICE" type="param-type" attributes >
 <constraint>value</constraint>
 <constraint>value</constraint>
 . . .
</param>

150 • ogScript Reference DashBoard CustomPanel Development Guide

Attributes

Attribute Values Restrictions Description
type STRING_PARAM

STRING_ARRAY
 Parameter must be string type.

value String Available strings for drop-down widget

Examples
The following constraint provides five string options for a String parameter.
<param constrainttype="STRING_CHOICE" name="Name" oid="0x504"
type="STRING_PARAM">
 <constraint>Zeus Test Card</constraint>
 <constraint>ZTC</constraint>
 <constraint>Johnny</constraint>
 <constraint>Matilda</constraint>
</param>

Figure 81 – String Choice

constraint (Alarm Table)
Alarm constraints map a set of alarms as bitfields into an INT16_PARAM or INT32_PARAM. Each bit
represents an independent alarm which may have a message and severity assigned to it. Alarm
parameters contribute to the device’s overall alarm status in DashBoard; the most severe alarm set will
determine the device’s overall reported alarm status.

Syntax
<param constrainttype="ALARM_TABLE" type="param-type" attributes >
 <constraint key="bit-number" severity="severity">value</constraint>
 <constraint key="bit-number" severity="severity">value</constraint>
 . . .
</param>

Attributes

Attribute Values Restrictions Description
type INT16_PARAM

INT32_PARAM
 Parameter must be integer type.

key Integer INT16: 0..15
INT32: 0..31

The bit position for the alarm (0 is LSB).

severity Integer The severity of the alarm:
0 = OK
1 = WARN
2 = ERROR

value String Alarm message text

Examples
The following constraint creates an alarm table:
<param constrainttype="ALARM_TABLE" name="Alarm" oid="0x504"

DashBoard CustomPanel Development Guide ogScript Reference • 151

type="INT16_PARAM">
 <constraint key="0" severity="0">Hardware OK</constraint>
 <constraint key="1" severity="2">Hardware Error</constraint>
 <constraint key="2" severity="1">Flash Memory Full</constraint>
</param>

constraint (Struct Constraints)
Struct Constraints allow a parameter to define a complex structure of multiple parameters. The Struct
Constraint is applied to each parameter that is an instance of a Struct.

Syntax
<param constrainttype="STRUCT" structtype="struct-type"
templateoid="template-oid"

type="STRUCT" param-attributes>

Attributes

Attribute Values Restrictions Description
type String Required Set to "STRUCT"

templateoid String Specifies a template OID to pre-populate
the structure. All parameters, constraints
and widgets for the sub-OIDs are copied
from the template.

structtype String Must be unique Defines the structure type. Used by
PanelBuilder to type-check custom
widgets against defined struct
parameters.

Examples
The following code is an example of a struct definition.
<param constrainttype="STRUCT" name="Clip Info" oid="clipInfo"

 structtype="playinfo" type="STRUCT" widget="36">

 <value>

 <subparam name="Clip Name" suboid="ClipName" type="STRING"
value="Test"/>

 <subparam name="Director" suboid="Director" type="STRING"
value="Test"/>

 <subparam name="Date" suboid="AirDate" type="STRING" value="Test"/>

 <subparam name="Author" suboid="Author" type="STRING" value="Test"/>

 </value>

</param>

152 • ogScript Reference DashBoard CustomPanel Development Guide

The following declaration utilizes the previous example as a template, by specifying the templateoid
attribute:
<param constrainttype="STRUCT" name="Clip List" oid="clipList"
 structtype="playinfo" templateoid="clipInfo" type="STRUCT_ARRAY"
widget="36">
 <value>
 <subparam suboid="ClipName" value="Winter is Coming"/>
 <subparam suboid="Director" value="Tim Van Patten"/>
 <subparam suboid="OriginalAirDate" value="April 24, 2011"/>
 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
 </value>
 <value>
 <subparam suboid="ClipName" value="The Kingsroad"/>
 <subparam suboid="Director" value="Brian Kirk"/>
 <subparam suboid="OriginalAirDate" value="April 24, 2011"/>
 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
 </value>
 <value>
 <subparam suboid="ClipName" value="Lord Snow"/>
 <subparam suboid="Director" value="Brian Kirk"/>
 <subparam suboid="OriginalAirDate" value="May 1, 2011"/>
 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>
 </value>
 <value>
 <subparam suboid="ClipName" value="A Golden Crown"/>
 <subparam suboid="Director" value="Daniel Minahan"/>
 <subparam suboid="OriginalAirDate" value="May 22, 2011"/>
 <subparam suboid="Author" value="David Benioff & D. B. Weiss"/>
 </value>
</param>

params
The parent container for parameters defined within the OGLML document. This tag may only contain
<param> tags.

Syntax
<params>

 <param param-attributes />

 <param param-attributes />

 . . .

</params>

Attributes
None.

timer
The timer tag fires events at regular intervals. Timers can operate on their own or linked to other timers.
ogScript commands exist to start/stop/reset timers (see ogScript documentation for more details).

Tasks are attached to listener tags to process data received.

Attributes

DashBoard CustomPanel Development Guide ogScript Reference • 153

Attribute Values Restrictions Description
id String Optional The ID used to reference this timer.

Required for ogScript, child timers, or
external <timertask/> tags to interact
with the timer.

source String Optional.
Must be the ID of
another timer.

If used, the timer being defined will be a
child of the timer with the given ID.

rate Long Not applicable if
“source” is set.

The rate (in milliseconds) at which the
timer fires.

delay Long Not applicable if
“source” is set.

The delay (in milliseconds) before the
timer initially fires.

pattern String The display pattern for the timer’s
current time:
https://docs.oracle.com/javase/8/docs/ap
i/java/text/SimpleDateFormat.html

start Long
or time in
format of
“pattern”

 The start value of the timer. If start >
stop, timer counts down.
If start is undefined, the timer is ‘clock
mode’

stop Long
or time in
format of
“pattern”

 The start value of the timer. If start >
stop, timer counts down.
If start is undefined, the timer is ‘clock
mode’

autostart True
*false

Default value is
true if ‘clock
mode’ is used.

Whether or not the timer automatically
starts. If it is not automatically started,
an ogScript command must be issued to
the timer to start it.

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

154 • ogScript Reference DashBoard CustomPanel Development Guide

listener
The listener tag allows an OGLML page to process network communications using protocols not
already available. It is designed for small and simple protocols only.

The listener tag can work in two different modes: listen for incoming connections (server mode) or
establish a connection (client mode). In both cases, the listener tag will listen for incoming data from
the remote system.

Tasks are attached to listener tags to process data received.

Attribute Values Restrictions Description
connecthost String Cannot be used if

listenport is
defined.

The hostname of the remote host to
connect to.

connectport Integer Cannot be used if
listenport is
defined.

The port to connect to on the remote
host.

listenport Integer Cannot be used if
connectport/conn
ect host are
defined.

The local port to listen on for new
connections.

delimitertype newline
bytes
fixedlen
varlen
string

Required. The mechanism used to separate one
incoming message from another.
“newline” = read bytes until 0x0A is
received
“bytes” = convert value in “delimiter”
attribute into a byte array and wait for
those bytes.
“fixedlen” = read a fixed number of bytes
for each message.
“string” = convert value in “delimeter” into
UTF-8 bytes and wait for those bytes.
“varlen” = convert value in “delimiter” to
an integer “n”. The first [n] bytes of the
message indicate how many bytes
follow.

delimiter May be required
depending on
value of
delimitertype

The data for the delimiter. Changes
depending on the value of delimitertype
bytes: The bytes in the message
delimiter. E.g. to listen for a Carriage
Return/Line Feed combination “0D0A”.
fixedlen: The number of bytes in each
message.
String: The UTF-8 String to wait for to
indicate the end of a message. E.g.
“END”
varlne: The number of bytes to read to
determine message length. E.g. if your
protocol defines a 2-byte length count at
the beginning of each message, the
value would be “2”.

syncword Optional Defines an array of bytes to read at the
start of an incoming message. E.g. for
openGear protocol, the sync word would
be “BAD2ACE5”

DashBoard CustomPanel Development Guide ogScript Reference • 155

Attribute Values Restrictions Description
blockingpause true

false
 When processing tasks, blockingpause

means that all message processing is
done in the message RX Thread. This
means that if a “pause” task is
encountered, all RX of messages will
pause too.

buttontype toggle
none

 If no button is defined, the listener is
automatically started. If a button is
defined, this allows the user to toggle the
listener off/on.

autostart true
false

 Whether or not the listener should be
automatically started.
This is always true if no buttontype has
been defined.

Example
<listener autostart="true" delimitertype="newline" listenport="12345">

 <task tasktype="ogscript">if (event.isMessageEvent())

 {

 var rec = event.getBytesAsString().trim();

 var response = '';

 for (var i = rec.length - 1; i >= 0; i--)

 {

 response += rec.charAt(i);

 }

 this.writeString('REVERSE: ' + response + '\n', false);

 }

 </task>

</listener>

task
Defines a block of ogScript to be run when an event happens in the system. Tasks inside of label tags
are fired when the label is clicked. Tasks inside of button tags are fired when the button is pressed.
Tasks inside of listener tags are fired whenever a connection is established or whenever data is
received.

The text content of the tag contains the actual ogScript to be executed.

Syntax
<component>

 <task tasktype="task-type">ogScript-code</task>

</component>

156 • ogScript Reference DashBoard CustomPanel Development Guide

Attributes

Tag Values Restrictions Description
tasktype *ogscript

robot
vdcp
rosstalk
ogparamset
timercontrol

 This attribute tells the editor user
interface what type of task is contained
in the tag body. Manually-edited tasks
should simply use ogscript.

timertask
Defines a block of ogScript to be run when a timer goes off. The timer must be in the same scope as the
timertask. The text content of the tag contains the actual ogScript to be executed.

Syntax
<container>
 <timer id=”timer-id”/>
 <container>
 <container>
 <timertask tasktype="task-type" timerid=”timer-id”>

ogScript Code
</timertask>

 </container>
 </container>
</container>

Attributes

Tag Values Restrictions Description
tasktype *ogscript

robot
vdcp
rosstalk
ogparamset
timercontrol

 This attribute tells the editor user
interface what type of task is contained
in the tag body. Manually-edited tasks
should simply use ogscript.

timerid String Must match the
id attribute of a
timer tag
accessible in this
tasks’s scope.

Defines the ID of a timer to fire this
timertask. This allows a timer to be
defined at the document root but perform
actions on elements defined much
deeper in the document structure.

DashBoard CustomPanel Development Guide ogScript Reference • 157

include
This tag allows an OGLML document to be assembled from several individual XML files or fragments.
The tag provides a URL, which is retrieved and then replaces the tag with the contents of the referenced
OGLML document.

Syntax
<include src="src"/>

Attributes

Attribute Values Restrictions Description
*src URL for http,

https, or “eo”
 Points to an OGLML document at the

given URL.
Documents are refreshed when a card is
re-queried (i.e. either card sends an
external object change, or
OGP_RESTART, or user clicks
“refresh”). HTTP fetches use if-modified-
since header and ETag (as defined in
RFC 2616 section 14.25 and 14.19
respectively)

A DashBoard-specific scheme “eo” can
be used to fetch content from an
External Object. Examples would be
“eo://1234” or “eo://0x4D2”). If this
format is used, DashBoard will look for
the OGLML document referenced by the
provided external object (contained
within an OGLML Descriptor).

For more information, see OGLML URLs
on page 53.

Device Resource Declarations
This section describes tags used to declare resources. These tags may be used in a stand-alone XML file
(such as a .ogd or .xml file), or may be embedded within an OGLML document (typically within a
<meta> block).

Resource XML File
Data store resources may be backed by an XML file. Below is an outline of the XML file structure:
<?xml version="1.1" encoding="UTF-8"?>
 <frame>

<card>

 <params>

 <param/>

 <param/>

 . . .

 </params>

 <statusmenu>

 <menu>

 <param/>

 <param/>

158 • ogScript Reference DashBoard CustomPanel Development Guide

 . . .

 </menu>

 <menu/>

 . . .

 </statusmenu>

 <configmenu>

 <menu>

 <param/>

 <param/>

 . . .

 </menu>

 <menu/>

 . . .

 </configmenu>

 <menugroup>

 <menu>

 <param/>

 <param/>

 . . .

 </menu>

 <menu/>

 . . .

 </menugroup>

 <menugroup/>

 . . .

 </card>

 <card/>

 . . .

</frame>

Resources within the <card> block may also be declared within an OGLML document, and should be
located within a <meta> block.

commands
Defines an OGP command for a device. OGP commands provide a way to use the OGP connection to

execute commands from other devices.

The primary difference between using commands and parameters, is that the DashBoard OGP Client
does not keep track of the state of the parameters in a command. The value of each parameter is specific
to the execution request. This allows DashBoard to send multiple crosspoint command requests to the
device and each one can have different values for the source/destination.

Once an OGP device has been added to DashBoard, you can use OGP commands to issue device
commands directly from a CustomPanel. For example, the CustomPanel below shows a subset of a
device commands that have been added to a CustomPanel. You can also create workflows using logic
blocks in the Visual Logic Editor or editing the code directly in the ogScript Editor.

DashBoard CustomPanel Development Guide ogScript Reference • 159

Syntax
"command1":{

 "oid": "command1",

 "name": "command 1",

 "type": "STRUCT",

 "readonly": false,

 "widget": "default",

 "value": ...

 },

"command2":{

 "oid": "command2",

 "name": "command 2",

 "type": "STRUCT",

 "readonly": false,

 "widget": "default",

 "value": ...

 }

Attributes

Attribute Values Restrictions Description
oid String *Required Command oid.

name String Not required Command name.

type String *Required Data type for the command.

readonly Boolean Not required If set to true, the parameter is read-only.

widget String Not required The widget used to dislay the data in
DashBoard.

constraint constraint
Object

Not required Parameter Constraint.

config config Object Not required Extended parameter configuration.

value String Not required Value of the parameter. Defines an
argument that can be passed to the
command.

Examples
This example shows a command called "SetResolution" that has a "Resolution" argument
that is constrained to the following choices: NTSC, PAL, 720P, and 1080P. The command is also shown
in the Visual Logic Editor below.

Figure 82 –Visusal Logic Representation of the Command

"commands":{

160 • ogScript Reference DashBoard CustomPanel Development Guide

 "SetResolution":{

 "oid":"SetResolution",

 "name":"Set Resolution",

 "readonly":false,

 "type":"STRUCT",

 "widget":"default",

 "value":[

 {

 "ResolutionOptions":{

 "name":"Resolution",

 "readonly":false,

 "type":"STRING",

 "widget":"text",

 "maxlength":"0",

 "totallength":"0",

 "constraint":{

 "value":"STRING_STRING_CHOICE",

 "choices":[

 {

 "value":"NTSC",

 "key":"NTSC"

 },

 {

 "value":"PAL",

 "key":"PAL"

 },

 {

 "value":"720P",

 "key":"720P"

 },

 {

 "value":"1080P",

 "key":"1080P"

 }

],

 "strict":false

 },

 "value":"720P"

 }

 }

],

 "constraint":{

 },

 "response":true

 }

}

DashBoard CustomPanel Development Guide ogScript Reference • 161

command
Defines an OGP command for a device. OGP commands provide a way to use the OGP connection to
execute commands from other devices. For more information, see the entry above.

Syntax
"command1":{

 "oid": "command1",

 "name": "command 1",

 "type": "STRUCT",

 "readonly": false,

 "widget": "default",

 "value": ...

 }

Attributes

Attribute Values Restrictions Description
oid String *Required Command oid.

name String Not required Command name.

type String *Required Data type for the command.

readonly Boolean Not required If set to true, the parameter is read-only.

widget String Not required The widget used to dislay the data in
DashBoard.

constraint constraint
Object

Not required Parameter Constraint.

config config Object Not required Extended parameter configuration.

value String Not required Value of the parameter. Defines an
argument that can be passed to the
command.

config
Provides a container for extended configuration key-value pairs for elements related to a parameter.
Contents are dependent on other constraints, parameter types or widgets.

Syntax
<param>
 <config key="key">value</config>
 <config key="key">value</config>
 . . .
</param>

162 • ogScript Reference DashBoard CustomPanel Development Guide

Attributes

Attribute Values Restrictions Description
key String Configuration parameter name

value String Configuration parameter value

Example
The following config object sets attributes of a graph widget:
 <param oid="Fader_Bar" right="5" widget="256">
 <config key="w.time">5</config>
 <config key="w.autoadvance">true</config>
 <config key="w.plotbg">#dark</config>
 <config key="w.plotfg">#00FF00</config>
 <config key="w.grid">#panelfg</config>
 <config key="w.hidelegend">true</config>
 <config key="w.hidey">false</config>
 <config key="w.hidex">false</config>
 </param>

constraint
Defines the choice constraint for a parameter. For INT_CHOICE constraints, the integer value is defined
with the key attribute and the text to display is the text content of the tag. For STRING_CHOICE
constraints, each constraint tag contains a value to populate a combo-box drop-down.

The parameter must have a constrainttype of INT16_CHOICE, INT32_CHOICE or STRING_CHOICE.

Syntax
<constraint key="choice1-key">choice1-value</constraint>

Attributes

Attribute Values Restrictions Description
key Integer Not required for

STRING_CHOICE
constraints

Numeric assignment of current
enumerated choice.

value String Text name for the current enumerated
choice

Examples
The following constraint provides an enumerated choice:
<param constrainttype="INT_CHOICE" name="Channel" oid="0x503"
type="INT16_PARAM">
 <constraint key="0">Channel 01</constraint>
 <constraint key="1">Channel 02</constraint>
 <constraint key="2">Channel 03</constraint>
 <constraint key="3">Channel 04</constraint>
</param>

The following constraint provides a list of selections for a STRING parameter:
<param constrainttype="STRING_CHOICE" name="Name" oid="0x504" type="STRING">
 <constraint>Jeremy Clarkson</constraint>
 <constraint>James May</constraint>
 <constraint>Richard Hammond</constraint>

DashBoard CustomPanel Development Guide ogScript Reference • 163

 <constraint>The Stig</constraint>
</param>

card
Top-level container for a device within an XML or OGD file. Encapsulates a device within a .frame file.
Note this tag should not be used as a container within an OGLML document.

Syntax
<card autosave="auto-save"

online="true" slot="slotno" sourceframe="frame-node-id"
sourceframename="device-name" sourceid="card-node-id"
status="status-level" statustext="status-text" version="2.0">

</card>

Attributes

Attribute Values Restrictions Description
autosave true

false
 If true, DashBoard will automatically

save contents of the resources specified
in the file from data store periodically.

online true
false

 Sets the device’s online status. Normally
should be set to true.

slot Integer Defines the slot-id for the device.

sourceframe String node-id of the frame or device.

sourceframename String Name of the device. This is the top-level
name shown in the DashBoard Tree

sourceid String The original node-id of the virtual device
(used when saved as the offline
configuration of a real device)

status 0 Not required for
PanelBuilder

Status OK

1 Status WARN

2 Status ERROR

statustext String Not required for
PanelBuilder

Status text for the node.

version String Set to 2.0.

Default values shown in bold.

164 • ogScript Reference DashBoard CustomPanel Development Guide

Example
The following example defines a device (openGear card) installed in a frame called “Demo Frame”, slot
10. The device’s node id is “172.16.7.230:5253(Slot10)SPG-8260”.
<card online="true" slot="10" sourceframe="172.16.7.230:5253"

sourceframename="Demo Frame"
sourceid="172.16.7.230:5253
Slot 10
SPG-8260"
status="0" statustext="OK" version="2.0">

</card>

frame
Top-level container for a frame within a .frame file. Note this tag should not be used as a container
within an OGLML document. Frame files are created by DashBoard.

Syntax
<frame name="frame-name" sourceid="node-id" >

<card/>

<card/>

. . .

</frame>

Attributes

Attribute Values Restrictions Description
Name String Display name of the frame

sourceid String The original node-id of the virtual device
(used when saved as the offline
configuration of a real device)

menu
Defines the controls to place within a menu tab or menu pop-up. <param> tags within the menu block
may override the param’s default attributes for display within this menu.

Synax
<menu menuid="menu-id" menustate="state" name="name" staticid="static-id">

 <param/>

 <param/>

 . . .

</menu>

DashBoard CustomPanel Development Guide ogScript Reference • 165

Attributes

Attribute Values Restrictions Description
menuid Integer Required Numeric ID for the menu. Menu tabs

within a menu group are displayed in
numeric order, lowest first. This value
may be changed to dynamically re-order
menus.

menustate 0 Menu is hidden

1 Menu is displayed, but params are read-
only

2 Menu is displayed and params are
read/write (based upon individual
parameter access permissions)

name String Name of the menu. This name will
appear in the menu tab.

staticid Integer Required Unique numeric identifier for this menu.
This value must be only set once and not
changed.

Example
The following example creates a menu called “Network Setup”.
<menu menuid="257" menustate="2" name="Network Setup" staticid="257">
 <param access="1" name="Addressing Mode" oid="0x711"/>
 <param access="1" name="IP Address" oid="0x712"/>
 <param access="1" name="Subnet Mask" oid="0x713"/>
 <param access="1" name="Default Gateway" oid="0x714"/>
</menu>

menugroup
Defines a menu group. The menugroup is a container for menus. When a menugroup is displayed, child
menus are displayed as tabbed elements within the container.

Syntax
<menugroup menuid="id" name="menu-group-name">
 <menu/>
 <menu/>
 . . .
</menugroup>

Attributes

Attribute Values Restrictions Description
menuid Integer Required Numeric ID for the menu group. This

value must be only set once and not
changed.
menuid=0 corresponds to the openGear
status menu
menuid=1 corresponds to the openGear
configuration menu

name String Name of the menu group.

Examples

166 • ogScript Reference DashBoard CustomPanel Development Guide

The following example creates a menu group with two menus:
<menugroup menuid="0" name="Status">
 <menu menuid="0" menustate="2" name="Status" staticid="0">
 <param access="0" name="Card Status" oid="0x201"/>
 <param access="0" name="Reference" oid="0x204"/>
 </menu>
 <menu menuid="1" menustate="2" name="Product Info" staticid="1">
 <param access="0" name="Product" oid="0x105"/>
 <param access="0" name="Name" oid="0x107"/>
 <param access="0" name="Supplier" oid="0x102"/>
 <param access="0" name="Software Rev" oid="0x10B"/>
 </menu>
</menugroup>

statusmenu
Defines the Status Menu group for the default openGear menu layout. This tag behaves in the same
manner as the <menugroup> tag when the menuid=0.

Syntax
<statusmenu menuid="id" name="menu-group-name">
 <menu/>
 <menu/>
 . . .
</statusmenu>

Attributes

Attribute Values Restrictions Description
menuid Integer Optional. Should

be set to 0.
Numeric ID for the menu group. This
value must be only set once and not
changed. Defaults to 0.

name String Name of the menu group.

DashBoard CustomPanel Development Guide ogScript Reference • 167

Example
The following example creates a status menu group with two menus:
<statusmenu menuid="0" name="Status">
 <menu menuid="0" menustate="2" name="Status" staticid="0">
 <param access="0" name="Card Status" oid="0x201"/>
 <param access="0" name="Reference" oid="0x204"/>
 </menu>
 <menu menuid="1" menustate="2" name="Product Info" staticid="1">
 <param access="0" name="Product" oid="0x105"/>
 <param access="0" name="Name" oid="0x107"/>
 <param access="0" name="Supplier" oid="0x102"/>
 <param access="0" name="Software Rev" oid="0x10B"/>
 </menu>
</statusmenu>

configmenu
Defines the Config Menu group for the default openGear menu layout. This tag behaves in the same
manner as the <menugroup> tag when the menuid=1.

Syntax
<configmenu menuid="id" name="menu-group-name">
 <menu/>
 <menu/>
 . . .
</configmenu>

Attributes

Attribute Values Restrictions Description
menuid Integer Optional. Should

be set to 1.
Numeric ID for the menu group. This
value must be only set once and not
changed. Defaults to 1.

name String Name of the menu group.

Example
The following example creates a status menu group with 2 menus:
<configmenu menuid="1" name="Status">
 <menu menuid="513" menustate="2" name="Network Setup" staticid="257">
 <param access="1" name="Addressing Mode" oid="0xFE11"/>
 <param access="1" name="IP Address" oid="0x712"/>
 <param access="1" name="Subnet Mask" oid="0x713"/>
 <param access="1" name="Default Gateway" oid="0x714"/>
 </menu>
 <menu menuid="514" menustate="2" name="Remote Control Setup"
staticid="258">
 <param access="1" name="Protocol" oid="0x411"/>
 <param access="1" name="Baud Rate" oid="0x412"/>
 <param access="1" name="Parity" oid="0x413"/>
 <param access="1" name="Stop Bits" oid="0x414"/>
 </menu>
</configmenu>

168 • ogScript Reference DashBoard CustomPanel Development Guide

params
The parent container for parameters defined within the OGLML document. This tag may only contain
<param> tags.

Syntax
<params>

 <param param-attributes />

 <param param-attributes />

 . . .

</params>

Attributes
None.

param
Creates a parameter descriptor, which defines the parameter. Declaration of a param descriptor must be
located within a <params> block. Constraints for the param may be included as an attribute (for range
constraints), or as child tags (for choice constraints).

Syntax
<param oid="oid" attributes/>

<param oid="oid" attributes>
<constraint/>
<constraint/>

 . . .

<config/>
<config/>

 . . .

</param>

Attributes

Attribute Values Restrictions Description
oid String Required, except

for subparams
The OID of the parameter (can be used
to override an existing parameter).

suboid String Required for
subparams

If the param declaration is a sub-param
within a struct, the OID is specified in the
suboid attribute.

access 0 Parameter is read-only in DashBoard

1 Parameter is read-write in DashBoard

name String Parameter Name

widget Positive integer Must be a valid
widget hint

Defines the default widget hint for the
param.

maxlength Positive integer Applies only to
String/String
Array parameters

The maximum length of any String
element in the parameter.

precision Positive integer This field defines the number of digits
following the decimal point displayed for
printed numbers. It applies mainly to
floating point numbers.

DashBoard CustomPanel Development Guide ogScript Reference • 169

Attribute Values Restrictions Description
type INT16 Param is 16-bit signed integer.

INT16_ARRAY Param is an array of 16-bit signed
integer.

INT32 Param is 32-bit signed integer.

INT32_ARRAY Param is an array of 32-bit signed
integer.

STRING Param is a string.

STRING_ARRAY Param is an array of strings.

FLOAT32 Param is a 32-bit (IEEE single) float.

FLOAT32_ARRAY Param is an array of 32-bit (IEEE single)
float.

STRUCT Param is a struct.

STRUCT_ARRAY Param is an array of struct.

BINARY_VALUE Param is of unknown type.

constraint Cvalue See constraint tag for more details.

constrainttype Ctype See constraint tag for more details.

stateless False Parameters are saved to backing source

True Parameters are not saved

value Varies Value type must
be compatible
with the specified
type.

Specifies the initial value of the param.
Arrays may be initialized by separating
values with ";".

config Varies Provides additional widget configuration
parameters.

Default values shown in bold.

Example
<param access="1" maxlength="0" name="Message" oid="Message" type="STRING"
value="Reverse this message" widget="3"/>

170 • ogScript Reference DashBoard CustomPanel Development Guide

param (struct)
Compound parameters may be defined through the use of the STRUCT param type. A struct contains a
collection of parameters. Structs may not be nested. Struct must have a constrainttype of STRUCT.
Members of the struct are declared through subparam tags within the value tag.

A struct may also use another param as a template to pre-populate the member sub-param declarations.
This is done through the templateoid attribute.

Syntax
<param constrainttype="STRUCT" oid="oid" type="STRUCT" attributes>

<value>

 <subparam suboid="sub-oid" sub-param-attributes/>

 <subparam suboid="sub-oid" sub-param-attributes/>

 . . .

</value>

</param>

Attributes

Attribute Values Restrictions Description
oid String Required The OID of the parameter (can be used

to override an existing parameter).

access 0 Parameter is read-only in DashBoard

1 Parameter is read-write in DashBoard

name String Parameter Name

widget Positive integer Must be a valid
widget hint

Defines the default widget hint for the
param.

type STRUCT Must be set to STRUCT.

structtype String Defines the structure type. Specifies a
dependency of a widget upon a global
struct parameter with matching
structtype. Currently this type checking
is restricted only to PanelBuilder UI; a
custom widget will only be available in
PanelBuilder if a parameter exists with
matching structtype.

templateoid String Specifies a template struct parameter to
pre-populate the subparams.

constrainttype STRUCT Must be set to STRUCT

value Container for subparam elements.

subparam param May not be a
nested struct
param

Member parameters, declared using the
same syntax as a param declaration,
with the exception that its oid is specified
in the attribute suboid.

Default values shown in bold.

DashBoard CustomPanel Development Guide ogScript Reference • 171

Example
The following declares a struct parameter.
<param access="1" constrainttype="STRUCT" name="Clip Info" oid="clipInfo"
type="STRUCT" widget="36">

<value>

<subparam name="Clip Name" suboid="ClipName" type="STRING"
value="Test"/>

<subparam name="Director" suboid="Director" type="STRING"
value="Test"/>

<subparam name="Air Date" suboid="AirDate" type="STRING"
value="Test"/>

<subparam name="Author" suboid="Author" type="STRING" value="Test"/>

</value>

</param>

The following declares an array of struct params, using the previous example as its template. Note that
any attributes specified explicitly will override the values provided in the template.
<param access="1" constrainttype="STRUCT" name="Clip List" oid="clipList"
templateoid="clipInfo" type="STRUCT_ARRAY" widget="36">

 <value>

 <subparam suboid="ClipName" value="Winter is Coming"/>

 <subparam suboid="Director" value="Tim Van Patten"/>

 <subparam suboid="AirDate" value="April 24, 2011"/>

 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>

 </value>

 <value>

 <subparam suboid="ClipName" value="The Kingsroad"/>

 <subparam suboid="Director" value="Brian Kirk"/>

 <subparam suboid="AirDate" value="April 24, 2011"/>

 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>

 </value>

 <value>

 <subparam suboid="ClipName" value="Lord Snow"/>

 <subparam suboid="Director" value="Brian Kirk"/>

 <subparam suboid="AirDate" value="May 1, 2011"/>

 <subparam suboid="Author" value="David Benoiff & D.B. Weiss"/>

 </value>

</param>

172 • ogScript Reference DashBoard CustomPanel Development Guide

Device Resource Tags
The following tags use resources provided by the same device that sent the OGLML document to
DashBoard.

The following tags can be used to incorporate standard openGear UI elements into an OGLML
document. For example the typical device page is composed of the following tagged resources.

Figure 83 – Device Resource Tags

Note that the tags described in this section add a control to the UI for manipulating the underlying
resource. These must be contained within a UI layout container.

Many of the tags are also used to define the underlying resource in the data store. Declarations may be
contained within a <meta> block of an OGLML or stand-alone XML file.

< buttonbar / >

< summary / >
< menugroup mid =" 1 "/ >

 <menu/>

< param/>

DashBoard CustomPanel Development Guide ogScript Reference • 173

menugroup
This tag is used to incorporate a top-level menu group as a single component. This includes all sub-
menus and parameters that would appear in a default-layout OGP menu.

Syntax
<menugroup mid="id" />

Attributes

Attribute Values Restrictions Description
Mid integer Must be a defined

top-level menu.
menuid of a defined menu.
0 = Status Menu
1 = Configuration Menu
2 = “Extra” Menu

menu
This tag provides a mechanism to display a standard OGP Menu in two different ways:

• Display the entire menu as a single component

• Create a clickable button to display the menu in a balloon dialog (similar to a tool tip).

Syntax
<menu mid="menu-id" popup="popup-flag" oglml="oglml-flag"

tabposition="position" GeneralAttributes />

Attributes
In addition to General Attributes, the following attributes may be specified to the <menu> tag:

Attribute Values Restrictions Description
Mid integer Must be a defined

OID Menu.
The static ID of the OID Menu to draw.

Popup true

name attribute
must also be
specified.

A button with the name attribute as its
label is the component. When pressed,
the menu will appear in a balloon dialog.
For more information, see
WIDGET_MENU_POPUP (20) on page
32.

false The menu is included as a single
component.

Oglml true

 If the referenced menu has been
overridden by an OGLML page, the
OGLML version of the menu will be
used.

false The standard OGP menu without any
OGLML will be used.

174 • ogScript Reference DashBoard CustomPanel Development Guide

Attribute Values Restrictions Description
Tabposition north

east
south
west

How the tabs are
rendered within
their quadrant is
determined by
the look and feel
(i.e. whether the
tabs fill the
available space,
are positioned to
the left, right, or
center of the
space, etc.)

Specifies the placement of the tabs for
any 3rd-level submenus.

Default values shown in bold.

param
Displays a widget to display and manipulate a param. Must be placed within a layout container tag. If
the param is an array, multiple widgets are displayed (one for each element).

Syntax
<param oid="oid" attributes/>

<param oid="oid" attributes>
<constraint/>
<constraint/>

 . . .

<config/>
<config/>

 . . .

</param>

Attributes

Attribute Values Restrictions Description
Showlabel true

false
 Display the parameter name as a label

beside the parameter elements.

Oid String Must be a defined
OID

The OID of the parameter to show.

*mid String Must be the static
menu ID of a
defined OID
Menu.

This is used to determine the user rights
for a parameter. The menu with the a
staticid matching the specified mid is
treated as the parent menu of the
parameter when checking read/write
rights and whether it is on a status menu
or a configuration menu.

If no mid is defined, the parameter is
always rendered as though it is on a
configuration menu with full read/write
rights.

DashBoard CustomPanel Development Guide ogScript Reference • 175

Attribute Values Restrictions Description
Element List of array

indices
separated by
commas

All array
elements
referenced must
exist in the
parameter value.

By default all elements of an array
parameter are returned. This attribute
can be used to return a subset of the
array. If a list is provided, only the
elements at the provided indices are
returned (note- you can specify the
elements in any order).

This value should either be “0” or should
not be provided for a non-array
parameter.

Widget Positive integer The value must
be a widget hint
defined for the
parameter’s type

By default, the widget hint provided by
the parameter will be used. This
attribute can be used to override the
parameter’s widget hint with another
one.

Expand true
false

Only applies to
radio and toggle
button
parameters.

Return each radio or toggle button
created by a choice constraint as a
separate element.

Constrainttype INT_CHOICE
or
eo://external-
object-OID

Can only be
applied to
parameters that
already use
choice
constraints.

Allows a device developer to override
the choice constraint defined in the OGP
Parameter Descriptor.

The parameter must either contain the
available choices in constriant tags
inside of the param tag or an external
object URL pointing to an external object
that contains an integer choice
constraint.

Onchange ogScript String The provided snippet of ogScript is
triggered when the parameter value
changes. A ParamScriptable object
named this is created within the
context of the onchange to view and
manipulate the param.

Relative true Parameter is interpreted as a relative
parameter within a widget. The widget
instance’s baseOID will be prefixed to
the param OID to create a fully-qualified
OID.

false

Default values shown in bold.
*mid is optional but its use is strongly recommended for User Rights Management support.

176 • ogScript Reference DashBoard CustomPanel Development Guide

constraint
Overrides the choice constraint for a parameter. For INT_CHOICE constraints, the integer value is
defined with the key attribute and the text to display is the text content of the tag. For STRING_CHOICE
constraints, each constraint tag contains a value to populate a combo-box drop-down.

The parameter must have a constrainttype of INT16_CHOICE, INT32_CHOICE or STRING_CHOICE.

Syntax
<constraint key="choice1-key">choice1-value</constraint>

Attributes

Attribute Values Restrictions Description
Key Integer Not required for

STRING_CHOIC
E constraints

Numeric assignment of current
enumerated choice.

Value String Text name for the current enumerated
choice

Examples
The following constraint provides an enumerated choice:
<param constrainttype="INT_CHOICE" name="Channel" oid="0x503"
type="INT16_PARAM">
 <constraint key="0">Channel 01</constraint>
 <constraint key="1">Channel 02</constraint>
 <constraint key="2">Channel 03</constraint>
 <constraint key="3">Channel 04</constraint>
</param>

The following constraint provides a list of selections for a STRING parameter:
<param constrainttype="STRING_CHOICE" name="Name" oid="0x504" type="STRING">
 <constraint>Jeremy Clarkson</constraint>
 <constraint>James May</constraint>
 <constraint>Richard Hammond</constraint>
 <constraint>The Stig</constraint>
</param>

buttonbar
Creates the button bar containing the “Refresh”, “Upload”, “Reboot”, and “Close” buttons. Normally
this appears at the bottom of a Device Tab. Only a single instance of this tag is permitted per OGLML
document.

Syntax
<buttonbar/>

DashBoard CustomPanel Development Guide ogScript Reference • 177

Attributes
None.

Example
The following displays the button bar:
<buttonbar/>

Figure 84 - <buttonbar/> tag

editor
Inserts the editor UI of another device node from the DashBoard Tree into the current container. The
editor tag may insert either the full editor UI or a compact summary.

Syntax
<editor objectid="object-id" template="template-style" widgetroot="root-flag"
/>

Attributes

Attribute Values Restrictions Description
Objected String ID of the device node to insert

Template summary Inserts a summary panel for the device.

Widgetroot Boolean Everything inside of the editor must be
kept together. Individual elements
cannot be dragged out to other panels.

Example
The following inserts the full UI for device with id 00.0f.9b.00.00.26(Slot 0)MFC-8310:
<editor objectid="00.0f.9b.00.00.26
Slot 0
MFC-8310"
widgetroot="true" />

The following inserts a summary panel for the device:
<editor objectid="00.0f.9b.00.00.26
Slot 0
MFC-8310"
template="summary" widgetroot="true" />

Figure 85 – Summary Editor

178 • ogScript Reference DashBoard CustomPanel Development Guide

summary
Creates the standard card status panel with card name, online state, and overall card status.

Syntax
<summary/>

Attributes
None.

Example
The following displays the summary panel for a device:
<summary/>

Figure 86 - <summary/> tag

statuscombo
Display a status icon for a single or multiple items from the DashBoard Tree View. When the status
icon is clicked, a list of tree nodes is expanded; these nodes can be then clicked to open the editor for
that node.

 This is largely intended to be created by dragging/dropping items from the DashBoard Tree View or
Advanced Tree View into a PanelBuilder CustomPanel document.

A hierarchy of <treeobject/> elements with the same attributes allows you to create combined status
items.

Syntax
<statuscombo attributes>

<treeElement name="node-name" objectid="node-id"/>
<treeElement name="node-name" objectid="node-id"/>
. . .

</statuscombo>

Attributes

Attribute Values Restrictions Description
Objected String Must be the

node-ID of a
node in
DashBoard tree
view

The node-id of the element in the tree to
display. If the object has children, they
are automatically shown under the node.

Name String The display name of the item.

DashBoard CustomPanel Development Guide ogScript Reference • 179

Example
The node-id of a node in the Tree View may be obtained by right-clicking the node and selecting “View
Connection Settings”.

Figure 87 – Connection Settings

The following code creates a statuscombo with 2 nodes:
<statuscombo grid="false" left="448" name="Favorite Cards" top="118">

<treeElement name="Slot 3: ZTC-8399"
objectid="172.16.9.31:5253
Slot 3
ZTC-8399"/>
 <treeElement name="Slot 5: SRA-8602"
objectid="10.1.9.36:5253
Slot 5
SRA-8602"/>
</statuscombo>

The result appears in DashBoard as:

Figure 88 – statuscombo

When clicked, it expands as follows:

Figure 89 – statuscombo expanded

180 • ogScript Reference DashBoard CustomPanel Development Guide

If the specified treenode has child nodes, it will appear as follows:

Figure 90 – statuscombo with child nodes

Macro Expansion
DashBoard includes several pre-defined macros which expand into specific useful information. The
following macros are supported:

Macro Description
%frame% Expands to the node-id of the current frame

%device% Expands to the node-id of the current device or card node

%slot% Expands to the node-id of the specified slot within the current frame

%value% Expands to a parameter’s value

%widget%%widget%

Expands to a widget’s id

%const% Expands to a lookup value

<label name="The son
is
%const['family']['son
']%"/>
%baseoid%%baseoid%

Expands to a widget’s baseOID

%fully-qualified-id% Expands to the full element id hierarchy

%panel-path% Expands to the path of the current CustomPanel

%app-path% Expands to the DashBoard installation directory

%id% Expands to the id of the current component

%eval[ogscript]% Performs a regular expression expansion

DashBoard CustomPanel Development Guide ogScript Reference • 181

%frame%
Expands to the node-id of the frame within the current context.

Syntax
%frame%

Example
<label name="frame node-id is %frame%"/>

Figure 91 - %frame% macro

%device%
Expands to the node-id of the current device within the current context.

Syntax
%device%

Example
<label name="device node-id is %device%"/>

Figure 92 - %device% macro

%slot%
Expands to the node-id of the specified slot within the frame in the current context.

Syntax
%slot slot-number%

Parameters

Parameter Values Restrictions Description
slot-number Integer Must be a valid slot

number within the
current frame

Slot number of the device whose node-
id is to be returned.

Example
<label name="slot 2 node-id is %slot 2%"/>

Figure 93 - %slot% macro

%value%
Expands to the value of a specified parameter.

182 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
%value ['param-oid'][element]%

Parameters

Parameter Values Restrictions Description
param-oid String The OID of the parameter whose value

is returned

element Integer The array index to return. For non-array
parameters this must be set to 0.

Example
The following displays the value of a parameter:
<label name="the value of myParam is %value['myParam'][0]%"/>

The following example utilizes the %value% macro to allow the value of one parameter to specify
which parameter to process. The parameter OIDName specifies the OID of the parameter which is
displayed in the line below. Note that when the parameter OIDName is changed, it is necessary to
manually reload the elements which display the results (label1 and label2), as the %value% macro is
expanded only when the control is rendered.
<params>
 <param name="OID Name" oid="OIDName" type="STRING" value="testOID2"/>
 <param name="test OID1" oid="testOID1" type="STRING" value="Fred"/>
 <param name="test OID2" oid="testOID2" type="STRING" value="George"/>
</params>

<abs>
 <param left="382" oid="params.OIDName" widget="3" width="243">
 <task tasktype="onchange">
 ogscript.reload ("label1");
 ogscript.reload ("label2");
 </task>
 </param>
 <label id="label1" left="382" name="The value of %value['OIDName'][0]%
is"/>
 <param id="label2" left="575" oid="%value['OIDName'][0]%" widget="1"/>
</abs>

Figure 94 - %value% macro

DashBoard CustomPanel Development Guide ogScript Reference • 183

%widget%
Expands to the id of widget within the current context.

Syntax
%widget%

Example
If used within a widget, the following displays the widget’s ID:
<label name="the value of myParam is %widget%"/>

%const%
Expands to the value of a lookup. The lookup must have a specified id.

Syntax
%const['id']['key']%

Parameters

Parameter Values Restrictions Description
id String Must be an id

defined in a
<lookup> tag

ID of the lookup tag.

key String Must be a valid
key within the
specified lookup.

Key within the lookup tag whose value
will be returned.

Example
Given the following lookup:
<lookup id="family" scope="private">
 <entry key="father">Homer Simpson</entry>
 <entry key="son">Bart Simpson</entry>
 <entry key="mother">Marge Bouvier-Simpson</entry>
 <entry key="daughter">Lisa</entry>
 <entry key="baby">Maggie</entry>
</lookup>

The following code will display the label “The son is Bart Simpson”.
<label name="The son is %const['family']['son']%"/>

184 • ogScript Reference DashBoard CustomPanel Development Guide

%baseoid%
Expands to the value of the baseOID attribute of the current widget.

Syntax
%baseoid%

Example
If you have a widget with a baseoid of params.audio.channels.1 with parameters for signal presence,
EQ, etc., you could attach change handlers to them as follows:
<ogscript handles="onchange" oid="%baseoid%.eq" element="0">

ogscript.debug('EQ has changed for %baseoid%:' + this.getValue());

</ogscript>

%fully-qualified-id%
Expands to the fully-qualified id of the current context. If the current context is nested within other
contexts, the hierarchy is expressed, separated by “.”. Note that only containers with a specified id are
included in the expansion.

Syntax
%fully-qualified-id%

Example
<abs id="abs1">

 <abs>

 <abs id="abs2">

 <label name="The fully qualified ID is %fully-qualified-id%"/>

 </abs>

 </abs>

</abs>

Figure 95 - %fully-qualified-id% macro

%panel-path%
Expands to the folder path which contains the current OGLML document.

Syntax
%panel-path%

Example
<label name="panel path is %panel-path%" />

Figure 96 - %panel-path% macro

%app-path%
Expands to the folder path which the current instance of DashBoard is installed.

DashBoard CustomPanel Development Guide ogScript Reference • 185

Syntax
%app-path%

Example
<label name="DashBoard is installed in %app-path%" />

Figure 97 - %app-path% macro

%id%
Expands to the id of the current context.

Syntax
%id%

Example
<label height="62" left="0" name="Click to see my context's ID" style="txt-
align:center;" top="0" width="291">

 <task tasktype="ogscript">ogscript.debug('My Context\'s ID is
"%id%"');</task>

</label>

%eval[ogscript]%
Evaluates the ogscript and replace the %eval[ogscript]% with the value returned by the script.

Syntax
%eval[ogscript]%

Example
<label height="62" left="0" name="%eval[var text = ''; for (var i = 0; i <
10; i++){text += i + ' ';} text.trim();]%" style="txt-align:center;" top="0"
width="291"/>

Figure 98 - %eval[ogscript]% macro

186 • ogScript Reference DashBoard CustomPanel Development Guide

ogScript Reference

About ogScript
Ross Video ogScript is a programming language developed by Ross Video to interact with DashBoard-
enabled devices.

It also enables you to add functionality and logic to custom panels you create in DashBoard.

Ross Video ogScript uses JavaScript functions, syntax, and primitive object types. To enable CustomPanel
developers to interact with panels and devices, ogScript adds some new global objects to JavaScript.
Most JavaScript works in ogScript scripts, although you might run across an occasional item that does
not work.

For information about ogScript objects and functions, refer to the topics in this section. For information
about JavaScript commands and syntax, search for “JavaScript Reference” on the World Wide Web.

This section contains information about ogScript objects and functions. It includes the following major
sections:

• ogscript Object
• params Object
• ParamScriptable Object
• rosstalk Object
• rosstalkex Object
• robot Object
• vdcp Object
• nkScript Object
• webcam Object
• NDI Object
• RPM Object

JavaScript
Ross Video ogScript is a programming language developed by Ross Video to interact with DashBoard-
enabled devices. It uses JavaScript functions, syntax, and primitive object types. To enable
CustomPanel developers to interact with panels and devices, ogScript adds some new global objects to
JavaScript. Most JavaScript works in ogScript scripts, although you might run across an occasional item
that does not work.

For information about ogScript objects and functions, refer to the sections in this guide. For information
about JavaScript commands and syntax, search for “JavaScript Reference” on the World Wide Web.

DashBoard CustomPanel Development Guide ogScript Reference • 187

Commonly Used Functions
Ross Video recommends that you first learn the following commonly used functions:

Ogscript

• debug
• rename

params

• getValue
• setValue

Functions Set in the User Interface
Functions in the following objects are typically set through a user interface:
• rosstalk Object
• robot Object
• vdcp Object
• multiSetScriptable Object
• nkScript Object

multiSetScriptable Object
In ogScript, use the multiSetScriptable object to change the values of multiple parameters at once.

To create a multiSetScriptable object, use:
params.createMultiSet();

For example:
params.createMultiSet('This is a message');

The following table lists the functions of the multiSetScriptable object. Detailed descriptions appear
after the table. If you are reading this document on-screen, click a function name in the table to view its
description.

Function Parameters Returns Description
execute N/A Boolean Execute the multiSet. Returns true if

execution was successful; otherwise
false.

setAllValues Object [OID], Object [] [Values] N/A

Update all values of the parameter with
the specified OID using the values from
the object array.

setValue Object [OID], Int [Index], Object [Value] N/A

Update the specified index using the
value object.

188 • ogScript Reference DashBoard CustomPanel Development Guide

ogscript Object
In ogScript, use the ogscript object to access a library of general-purpose functions. To call a general-
purpose function, use:
ogscript.function name(parameters);

For example:
ogscript.debug ('This is a message');

The following table lists the functions of the ogscript object. Detailed descriptions appear after the table.
If you are reading this document on-screen, click a function name in the table to view its description.

Function Parameters Returns Description
addOnClose Function Reference N/A Runs a function when the panel is

closed.
'closed' means that the tab is
closed, DashBoard is closed, or the
panel is reloaded.

addRemoteTrigger String [Function]
String [Trigger ID]
String [Trigger Name]

Returns an object that
contains one function
named close. When
executed, close removes
the function.

Allows remote execution of a script
inside of a CustomPanel through the
RossTalk GPI command.
Function can be removed by calling
close on the object returned.

appendXML String [Container ID]
String [XML snippet]

N/A Adds a section of OGLML code to
the panel identified by the Container
ID parameter. The OGLML is added
during runtime and does not affect
the .grid file.
Valid only in <abs/> containers.

asyncExec Function Reference
Long [Delay]

N/A Executes a function outside of the
UI current thread.

asyncFTP String [Host]
Integer [Port]
String [Username]
String [Password]
String [destPath]
String [destName]
Boolean [Binary]
String [sourceFilePath]
Function reference
[Callback]

N/A Sends a file to an FTP server.

asyncFTPGet String [Host]
Integer [Port]
String [Username]
String [Password]
String [srcPath]
String [srcName]
Boolean [Binary]
String [destFilePath or
null]
Function reference
[Callback]

N/A Retrieves a file from FTP server.

DashBoard CustomPanel Development Guide ogScript Reference • 189

Function Parameters Returns Description
asyncFTPListFiles String [Host]

Integer [Port]
String [Username]
String [Password]
String [Path]
String [fileName]
Boolean [Binary]
Function reference
[Callback]

An array of FTPFile
objects

Asynchronously gets a list of all files
at a specified directory on an FTP
server.

asyncHTTP String [URL]
Integer [Method]
String [Content_Type]
Object [Data]
Function reference
[Callback]

N/A Send an asynchronous request to
the given URL. Call the given
function when the request has
completed. The data retrieved from
the HTTP request is passed as a
string as the first variable in the
method.
If the MIME type of the HTTP
response is image or binary, the
result will be a byte array containing
what is fetched.

asyncPost String [URL]
String [HTTP Post Data]
Function [Callback
Function]
Boolean [include
response]

N/A Send an asynchronous post to the
given URL.

cancelTimer Timer ID N/A Cancel, stop and clean-up, a timer
with the given ID.

closePanel N/A N/A Closes the DashBoard panel that
the command was called from.

colorToHSL Integer [Color]
String [Color]

A float array containing
the HSL version of the
color parameter

Converts an RGB color to an HSL
color.

copyByteArray Byte array [Src]
Integer [Offset]
Integer [Length]

byte array Creates a full or partial copy of a
byte array.

copyText String [Text N/A Copies text to the operating
system's clipboard.

createAMPSender N/A An AMPCommands
object

Creates a library of commands for
controlling video servers using the
Advanced Media Protocol (AMP).

createAsyncExec String [Thread ID] An asynchronous thread
with the specified ID if it
was created, null
otherwise

Creates a new asynchronous
thread with the specified ID.

createByteArray Integer [Length] An empty byte array Creates an empty byte array of a
specified size.

createFileInput String [File path] FileInputParser (like
MessageParser but with
getSize(), close(), and
isClosed()

Access a file as a byte array with
the same capabilities as
MessageParser to read raw bytes

190 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
createFileOutput String [File path]

Boolean
[appendToExistingfile]

FileOutputBuilder, which
is same as
MessageBuilder with
added functions for clear()
(overwrite file), close(),
getSize(), flush(), and
isClosed()

Create a new file or append to an
existing file. Instead of saving XML
or string data, gives access to write
raw bytes (or strings, or shorts, or
ints, etc.). Also gives the ability to
append to a file. Once open, it does
not close the file until the panel is
closed or close() is called. This is
handy for logging.

createListener String [ID]
Object [Listener Settings]
Function reference
[Listener Task]

An IServerWithClose
object, which contains
functions close, setPort,
start, and stop

Create a new listener with its own
ID, settings, and task.

createMessageBuilder N/A Returns a
MessageBuilder object
used to build byte arrays
(generally for creating
network messages).

Creates a message builder, which
enables you to construct a
message.

createMessageParser messageBytes Returns a MessageParser
object (generally used to
parse the various pieces
of messages received
over the network).

Creates a message parser, which
enables you to parse a message.

createVDCPSender N/A A VDCPCommands
object.

Creates a library of commands for
using the video disk control protocol
(VDCP).

debug String [Message] N/A Write a string to the openGear
Debug Information View.

fireGPI String [Trigger]
String [State]
Boolean [Global]

N/A Sends Trigger GPI string [trigger] to
execute component task lists.
Sends optional [state] data string,
which can be read by the script.
When [global]’ value is 'true',
applies to all open panels.
When [global] is 'false', applies only
to the current active panel.

focus String [ID] N/A Sets the focus to a component with
a specified ID.

ftp String [Host]
Integer [Port]
String [Username]
String [Password]
String [Destination Path]
String [Destination Name]
Boolean [Binary]
Object [Data]

An FTPResponse object
which contains a boolean
'success', an object 'data',
and an exception 'ex'

Saves an object to a destination
path on an FTP server. Useful to
store statistics, images, and any
other data on a server.

ftpGet String [Host]
Integer [Port]
String [Username]
String [Password]
String [Source Path]
String [Source Name]
Boolean [Binary]
Object [Destination File]

An FTPResponse object
which contains a boolean
'success', an object 'data',
and an exception 'ex'

Gets a file from the source path on
an FTP server, and stores it in the
destination object. Useful to grab
statistics, images, or any other data
from a server.

DashBoard CustomPanel Development Guide ogScript Reference • 191

Function Parameters Returns Description
ftpListFiles String [Host]

Integer [Port]
String [Username]
String [Password]
String [Source Path]
String [File Name]

Returns an array of
FTPFile objects

Gets a list of all files at a specified
directory on an FTP server.

getAllById String [Object ID] Object [] Get all Objects accessible in the
current context that have the
associated ID.

getApplicationPath N/A A String representation of
the path to the
DashBoard installation
location

Returns the path to the installation
location of DashBoard.

getAsyncExecById String [Thread ID] An asynchronous thread
with the specified ID if
one was found; otherwise
null

Finds and returns an asynchronous
thread with a specified ID.

getAttribute String [Attribute ID] Object Get an attribute registered in the
context with the given ID.

getBrowserById String [Browser ID] If found, returns a
browser element with the
specified ID, null
otherwise

Finds and returns a browser object
with a specified ID. If browser with
specified ID was not found, returns
null.

getBuild N/A DashBoard version
number (same value that
appears in Help>About
DashBoard)

Gets the version of DashBoard
running the panel.

getComponentsById String [Object ID] Component [] Get all Java Swing components
accessible in the current context
that have the associated ID.

getContextId N/A A string representation of
the context ID if it exists;
otherwise null

Gets and returns the current context
ID if it exists.

getCurrentUser N/A String Returns the username of the
current DashBoard user.

getFile String [filePath] The File object found at
the specified path if it was
found, null otherwise

Finds and returns a file at a given
path.

getFileSize String [filePath] A long equal to the size of
the file in bytes

Used to find the size (in bytes) of a
file at a specified path.

getImageById String [Image ID] An image if one matching
the ID was found, null
otherwise.

Finds and returns an image with a
specified ID.

getIncludeById String [Include ID] IncludeReloadableContai
ner

Returns the first include with the
given ID.

192 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
getListenerById ID getListenerById returns

an object representing the
listener.
This object has three
public methods you can
call: start(), stop(), and
isStarted().
The return depends on
which of the three
methods is used:
If the start() method is
used, return is true if the
listener started
successfully; otherwise
false.
If the stop() method is
used, return is true if the
listener stopped
successfully; otherwise
false.
If the isStarted() method
is used, return is true if
the listener is started;
otherwise false.

Starts or stops a listener. Can also
check whether a listener is started.

getModificationDate String [File Path] Returns the time the
specified file was last
modified, in Unix Epoch
time (also known as
POSIX time), as a LONG
value.

Retrieves the time the specified file
was last modified.

getObject String [Key] String Retrieves stored object

getPanelPath N/A A String representation of
the path to the calling
panel.

Gets the path of the panel the
function was called by

getPanelRelativeURL String [Path] A String representing the
full path of the relative
path with respect to the
panel's path

Gets the full URL of a path with
respect to the panel it is called from.
Could be used to get the full path of
an "images" or "stats" directory.

getPosition String [ID] JAVA point object with
point.x and point.y
available.

Retrieves the horizontal (x) and
vertical (y) position of the object, in
pixels.

getPrivateString String [Lookup ID]
String [Key]

String Get a string defined in the lookup
table with the specified lookup ID.

getScopedAttribute String [Scope Name]
String [Attribute ID]

Object Get an attribute in the named scope
that has the given ID. Scopes are
often internally defined by
DashBoard.

getSize String [ID] Dimension object with
d.width and d.height
available

Retrieves the width and height of
the specified panel object.

getString String [Key] String Get a string defined in the global
lookup table.

getTimerManager N/A ContextTimerManager Get the timer manager for the
context to access timers and
perform operations on selected
timers.
This function includes several
methods.

DashBoard CustomPanel Development Guide ogScript Reference • 193

Function Parameters Returns Description
hide String [ID] N/A Hide the popup with the specified

ID.

hslToColorString Float32_Array [HSL Float
Array]

A hex string
representation of the HSL
color; if HSL float array
was invalid, returns null

Converts an float array containing
HSL data (hue, saturation,
lightness) to a color string (Color
string displays the color in
hexadecimal).

http String [URL]
String [Method]
String [Request Content
Type]
Object [Data Object]
Boolean [Include
Response]

Either string data or a
JSON object

Used to fetch content from a web
server or call restful API.

installTimer String [Timer ID]
Boolean [Repeat]
Long [Delay]
Long [Repeat Rate]
Function [Task]

N/A Create a timer with the given ID and
register it in the
ContextTimerManager. Start the
timer after the specified delay,
repeat the timer if requested at the
specified rate. When the timer fires,
run the specified ogScript function.

isClosed N/A True if the context is
closed or does not exist;
otherwise false

Will return true if the context is
closed or does not exist, and false
otherwise.
‘closed’ means that the tab is
closed, DashBoard is closed, or the
panel is reloaded.

isTimerRunning

String [Timer ID] Boolean Report whether or not a timer exists
and is in the “running” state.
true — a timer with the given ID
exits and is in the “running” state.
false — a timer with the give ID
does not exist or is not in the
“running” state.

jsonToString NativeObject [JSON
native object]

A String representation of
the JSON native object

Transforms a JSON object into a
String.

parseXML String [Document] org.w3c.dom.Document Parse and return an XML document
using the org.w3c.dom.Document
API.

pasteText N/A A String containing the
contents of the system
clipboard

Gets the contents of the operating
system clipboard, if the contents
can be represented as a string.

putObject String [Key]
String [Value]

N/A Defines a stored object.

putPrivateString String [LookupID]
String [Key]
String [Value]

N/A Add or replace a string in a private
lookup table.

putString String [key]
String [value]

N/A Add or replace a string in the global
lookup table.

reload String [ID] Null, if null is provided as
the ID.

Rebuild the UI element with the
given ID.
If no ID is provided, rebuilds entire
document.

194 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
rename String [ID]

String [Name]
N/A Modify the text for a tab name,

button, or label with the specified
ID.

reposition String [ID]
Integer [x position]
Integer [y position]

N/A Moves object to specified XY pixel
location

repositionByPercent String [ID]
Integer [percent x]
Integer [percent y]
Boolean [center x]
Boolean [center y]

N/A Moves object to the specified
location, as percentage of the
container width or height.
Center x and center y, when true,
center the object at the location
horizontally (x only), vertically (y
only), or both (x and y).

reveal String [ID] N/A Open a popup with the specified ID,
or bring the tab with the specified ID
to the foreground.

runXPath String [XPath]
String [XML Document]
or
String [XML Element]

NodeList Execute the given XPath command
on the given Document or Element
and return the results as a
NodeList.

saveToFile String [path]
String, byte [], or XML
[data]
Boolean [overwrite]

Returns true, if data is
written successfully;
otherwise false.

Saves data to a file. This function is
typically used to save a byte array,
string, or XML document to a file.

sendUDPAsBytes String [Host]
Integer [Port]
Byte[] [Data]

N/A Send the given Data bytes to the
provided Host/Port through UDP.

sendUDPBytes String [Host]
Integer [Port]
Byte [Data]

N/A Send the given Data bytes to the
specified host/port through UDP.

sendUDPString String [Host]
Integer [Port]
String [Data]

N/A Convert the given Data string to
UTF-8 bytes and send them to the
provided Host/Port through UDP.

setAnchorPoints String [ID]
Boolean [top]
Boolean [left]
Boolean [bottom]
Boolean [right]

N/A Specifies how an object moves if
the user interface is resized for
different monitor and window sizes.
Anchors or releases an object
to/from the top, left, bottom, or right
sides of its container.

setSize String [ID]
String [width]
String [height]

N/A Resizes a panel object to the
specified size.
Valid only in <abs/> containers.

setStyle String [ID]
String [Style]

N/A Set Style parameters for the
component with the given ID if it
exists.

setXML String [ID]
String [new XML Content]

N/A Dynamically generates UI
components through ogscript.
Replaces the contents of an
element with a string of XML code.

toBottom String [ID] N/A Displays the object below all others
in the same container. Objects are
layered. If they overlap, higher
layers are drawn over lower layers.

DashBoard CustomPanel Development Guide ogScript Reference • 195

Function Parameters Returns Description
toTop String [ID] N/A Displays the object above all others

in the same container. Objects are
layered. If they overlap, higher
layers are drawn over lower layers.

upload File [Upload File] N/A Open the File Upload dialog with
the specified file.

addOnClose
Runs a function when the panel is closed.

'closed' means that the tab is closed, DashBoard is closed, or the panel is reloaded.

Syntax
ogscript.addOnClose(Function);

Parameters

Parameter Type Required Description
Function Function

reference
Yes Function to be added on close.

Returns
N/A

Example
ogscript.addOnClose(functionName);

addRemoteTrigger
Allows remote execution of a script inside of a CustomPanel through the RossTalk GPI command. The
function can be removed by calling close on the object returned.

Syntax
ogscript.addRemoteTrigger(function);

ogscript.addRemoteTrigger(triggerID, function);

ogscript.addRemoteTrigger(triggerID, triggerName, function);

Parameters

Parameter Type Required Description
Function String Yes The function to execute, including its

parameters (if any).
Trigger ID String Yes String that triggers the specified function to

execute.
Trigger Name String Yes Shows on the button in the web UI.

Returns
Returns an object that contains one function named close. When executed, close removes the

196 • ogScript Reference DashBoard CustomPanel Development Guide

function.

Example
// Add a remote trigger with a function named testFunction

ogscript.addRemoteTrigger('testFunction()');

appendXML
Adds a section of OGLML code to the panel identified by the Container ID parameter. The OGLML is
added during runtime and does not affect the .grid file.

The appendXML function is supported within the <abs> tag only.

Syntax
ogscript.appendXML(container ID, XML snippet);

Parameters

Parameter Type Required Description
container ID String Yes ID of the container to append to. Valid only

in <abs/> containers.

XML snippet String (XML
object)

Yes XML code to append

Returns
N/A

Example
Coming Soon.

asyncExec
Executes a function outside of the UI current thread.

This is especially useful for operations that take time to complete. You can use asyncExec to run such
operations while continuing to execute the rest of your tasks.

Syntax
ogscript.asyncExec(function);

ogscript.asyncExec(function, delay);

Parameters

Parameter Type Required Description
function Function

reference
Yes Reference to the function to be executed.

Can also be an anonymous function.

delay Long No Delay (in milliseconds) before executing
the function.
Note: If the asyncExec thread is busy
executing another task at the specified
time, the function will execute as soon as
the asyncExec thread is free.

Returns

DashBoard CustomPanel Development Guide ogScript Reference • 197

N/A

Example 1
This example displays two buttons. Each button runs a function named incrementFunction, which
increments a parameter named Number until it reaches 500000. The Number parameter is displayed in
the top left corner of the panel.

The button labeled Start Count executes the function normally. No other tasks can start while the count
proceeds. The display of the Number parameter isn’t refreshed until the count is complete.

The button labeled Start Count Using asyncExec executes the function asynchronously. The panel can
start other tasks, and the user interface continues to function normally, while the count proceeds. The
display of the Number parameter is updated as its value changes.

The interface for this example appears as follows:

The source code for this example is as follows:
<abs contexttype="opengear">

<meta>

<params>

<param access="1" constraint="0.0;500001.0;0.0;500001.0;1"
constrainttype="INT_STEP_RANGE" name="Number" oid="Number"
precision="0" type="INT32" value="0" widget="label"/>

</params>

<api>function reallyLongFunction()

{

<!-- < represents less than and > represents greater than -->

for (var i = 0; i < 500001; i++)

{

params.setValue('Number', 0, i);

}

}</api>

</meta>

<param expand="true" height="62" left="17" oid="Number" top="20"
width="205"/>

<button buttontype="push" height="66" left="20" name="Start Count"
top="100" width="250">

<task tasktype="ogscript">reallyLongFunction();</task>

</button>

<button buttontype="push" height="66" left="20" name="Start Count Using
asyncExec" top="180" width="250">

<task tasktype="ogscript">ogscript.asyncExec(reallyLongFunction);</task>

198 • ogScript Reference DashBoard CustomPanel Development Guide

</button>

</abs>

Example 2
The ogscript.asyncExec function does not allow you to pass parameters directly to the function you
want to call. This example demonstrates how to work around this limitation, to asynchronously execute
functions that require parameters, using a “wrapped function” technique.

In this example, which calculates the area of a triangle, the user can toggle between executing the
calculation function synchronously or asynchronously. Each time the calculation function is executed,
the openGear debug console receives a message indicating whether the execution call was synchronous
or asynchronous.

The interface for this example, including the openGear debug console, appears as follows:

The source code for this panel uses a variable named async to control whether the function named
callMyFunction is executed synchronously or asynchronously.

The source code for this example is as follows:
<abs contexttype="opengear" style="">

<meta>

<ogscript handles="onchange" id="ogs-onchange-base" name="Base Change
Handler" oid="a">calcArea();</ogscript>

<ogscript handles="onchange" id="ogs-onchange-height" name="Height Change
Handler" oid="b">calcArea();</ogscript>

<api id="api-asyncExec-demo" name="asyncExec Demo">function calcArea () {

var async = params.getValue('mode', 0) === 1;

function callMyFunction (base, height) {

//Note: This example uses two parameters, but you can use as few or as many
as required.

return function () {

params.setValue('area', 0, (base * height/2));

}

}

DashBoard CustomPanel Development Guide ogScript Reference • 199

if (async) {

ogscript.debug ('making asynchronous call');

ogscript.asyncExec(callMyFunction(params.getValue('a',0),
params.getValue('b',0)));

} else {

ogscript.debug ('making synchronous call');

callMyFunction(params.getValue('a',0), params.getValue('b',0))();

//Note: The parentheses at the end of the previous line are required to
call the wrapped function.

}

}</api>

<params>

<param access="1" constraint="0.0;100.0;0.0;100.0;1.0"
constrainttype="FLOAT_STEP_RANGE" name="A" oid="a" precision="0"
type="FLOAT32" value="10.0" widget="default"/>

<param access="1" constraint="0.0;100.0;0.0;100.0;1.0"
constrainttype="FLOAT_STEP_RANGE" name="B" oid="b" precision="0"
type="FLOAT32" value="10.0" widget="default"/>

<param access="1" constrainttype="FLOAT_NULL" name="Area" oid="area"
precision="3" type="FLOAT32" value="50.0" widget="default"/>

<param access="1" constrainttype="INT_CHOICE" name="Mode" oid="mode"
precision="0" type="INT16" value="0" widget="default">

<constraint key="0">Synchronous</constraint>

<constraint key="1">Asynchronous</constraint>

</param>

</params>

</meta>

<simplegrid cols="2" height="219" left="5" top="20" width="525">

<label header="true" name="Mode" style="txt-align:west"/>

<param expand="true" oid="mode" showlabel="false" widget="toggle"/>

<label header="true" name="Base Length" style="txt-align:west"/>

<param expand="true" oid="a"/>

<label header="true" name="Triangle Height (perpendicular to base)"
style="txt-align:west;"/>

<param expand="true" oid="b"/>

<label header="true" name="Computed Area of Triangle (in square units)"
style="txt-align:west"/>

<param editable="false" expand="true" oid="area" widget="text-display"/>

</simplegrid>

</abs>

asyncFTP
Sends a file to an FTP server. If a callback is provided, asyncFTP calls it when the operation is
complete.

Note: As the file is transferred, a progress attribute is updated. You can add an ogscipt handler to monitor
changes to the attribute to show progress.

Syntax
ogscript.asyncFTP (host, port, username, password, destPath, destName,
binary, sourceFilePath, callback);

Parameters

200 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
host String Yes The host name of the destination

computer.
port Integer Yes The port number to which the data is to be

sent.
username String Yes The username required to log onto the

destination computer.
password String Yes The password required to log onto the

destination computer.
destPath String No The directory path where the data is to be

saved on the destination computer.
destName String No The name of the destination file.

Can be used to rename the existing file.
If a file with the same name exists in the
destination path, that file is overwritten.

binary Boolean Yes Specifies the transfer mode. When true,
binary transfer is used.
When false, ASCII transfer is used.

sourceFilePath String Yes The directory path to the source file. The
path can be absolute or relative.

callback function
reference

No The callback is called when the operation
is complete, whether or not the operation is
successful.

Returns
N/A

Example 1
The following example is a task. It uses variable to populate the parameters of the asyncFTP function. It
also includes a callback to indicate success or failure of the transfer.
<task tasktype="ogscript">function callback(success, sourceFilePath,
exception)

{

if (success)

{

ogscript.rename('label.bytes', 'SUCCESS!');

}

else

{

ogscript.rename('label.bytes', 'FAIL!');

}

}

ogscript.rename('label.bytes', 'TRYING TO SEND FILE'); var host =
params.getStrValue('params.host', 0);

var port = params.getValue('params.port', 0);

var user = params.getStrValue('params.username', 0);

var password = params.getStrValue('params.password', 0); var file =
params.getStrValue('params.file', 0);

var destPath = params.getStrValue('params.destpath', 0); var
destFileNameOverride = null;

var isBinary = true;

ogscript.asyncFTP(host, port, user, password, destPath,
destFileNameOverride, isBinary, file, callback);

ogscript.rename('label.bytes', 'Waiting...');

DashBoard CustomPanel Development Guide ogScript Reference • 201

</task>

Example 2
The following is an example of an ogscript handler for monitoring and reporting the progress of the
transfer.
<ogscript attribute="com.rossvideo.ftp.event" handles="attributechange">

var progressEvent = event.getNewValue();

if (progressEvent == null)

{

ogscript.debug('No progress');

}

else

{

ogscript.rename('label.bytes', (progressEvent.getTotalBytesTransferred()
/ 1024) + 'kb');

}

</ogscript>

asyncFTPGet
Retrieves a file from FTP server.

Syntax
ogscript.asyncFTPGet(host, port, username, password, srcPath, srcName,
binary, destFilePath or null, callback);

Parameters

Parameter Type Required Description
host String Yes The host name of the source computer,

from which the file is to be retrieved
port Integer Yes The port number required to access the

source computer.
username String Yes The username required to log onto the

source computer.
password String Yes The password required to log onto the

source computer.
srcPath String No The directory path where the source file is

located.
srcName String Yes The name of the file to be retrieved.
binary Boolean Yes Specifies the transfer mode. When true,

binary transfer is used.
When false, ASCII transfer is used.

destFilePath or null String No The directory path where the file is to be
saved on the local computer.
If null, the file is saved in the same
directory as the panel.

callback function
reference

No The callback is called when the operation
is complete, whether or not the operation
is successful.

Returns
N/A

Example

202 • ogScript Reference DashBoard CustomPanel Development Guide

Coming soon.

asyncFTPListFiles
Asynchronously gets a list of all files at a specified directory on an FTP server. Returns an array of
FTPFile objects, on which the following methods can be called:

- file.getName()

- file.getTimestamp() (is a java.util.Calendar object)

- file.getSize()

- file.isFile()

- file.isDirectory()

Syntax
ogscript.asyncFTPListFiles(host, port, username, password, path, callback);

ogscript.asyncFTPListFiles(host, port, username, password, path, fileName,
callback);

Parameters

Parameter Type Required Description
Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Path String Yes Source path

fileName String Optional Source file name, can contain the ".*"
wildcard.

callback Function
reference

Yes Callback function. Invoked after
FTPListFiles is complete.

Callback is passed success, list of files, and
exception

Returns
Returns an array of FTPFile objects.

FTPFile class is used to represent information about files stored on an FTP server.

Example 1
Outputs the file and directory names located at the directory '/Media/Sports/Sens' on an FTP server.

The source code for this example is as follows:
function outputResults(success, files, exception)

{

if (!success)

{

ogscript.debug("NO SUCCESS");

return;

}

else if (files != null)

{

DashBoard CustomPanel Development Guide ogScript Reference • 203

/*

* files[i].getName()

* files[i].getTimestamp // returns java.util.Calendar

* files[i].getSize() // returns file size in bytes

* files[i].isFile() // returns true if the file is a File (not a
directory)

* files[i].isDirectory() // returns true if the file is a Directory

*/

ogscript.debug("GOT " + files.length + " FILES");

for (var i = 0; i < files.length; i++)

{

var jsTime = (new Date(files[i].getTimestamp().getTimeInMillis()));

if (files[i].isDirectory())

{

ogscript.debug("GOT DIRECTORY: " + files[i].getName());

}

else

{

ogscript.debug("GOT FILE: " + files[i].getName() + " " + jsTime);

}

}

}

}

ogscript.asyncFTPListFiles('CAPRICABVS', 21, 'username', 'password',
'/Media/Sports/Sens', outputResults);

asyncHTTP
Send an asynchronous request to the given URL. Call the given function when the request has
completed. The data retrieved from the HTTP request is passed as a string as the first variable in the
method.

If the MIME type of the HTTP response is image or binary, the result will be a byte array containing
what is fetched.

Syntax
ogscript.asyncHTTP(URL, Method, Content_Type, Data, Callback);

ogscript.asyncHTTP(URL, Method, Content_Type, Data, Callback,
Include_Response_Code);

Parameters

Parameter Type Required Description
URL String Yes Http url

Method String Yes The method for the URL request, one of:
GET POST HEAD OPTIONS PUT DELETE
TRACE are legal, subject to protocol
restrictions.

Content_Type String Yes The content type of the request.

Data Object Yes Data can be a string, byte array, XML, or
JSON object

Callback Function
reference

Yes Function to call after the request
completes.

204 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
Include_Response_
Code

Boolean No True to include response code; otherwise
false.

Returns
N/A

Example
Coming soon.

asyncPost
Send an asynchronous post to the given URL. Call the given function when the post has completed. The
data retrieved from the HTTP Post is passed as a string as the first variable in the method.

If the MIME type of the HTTP response is image or binary, the result will be a byte array containing what
is fetched.

Syntax
ogscript.asyncPost (URL, HTTP Post Data, Callback Function);

ogscript.asyncPost (URL, HTTP Post Data, Callback Function, Include
Response);

Parameters

Parameter Type Required Description
URL String Yes URL to send a post.
HTTP Post Data String Yes Post to send to the specified URL.
Callback Function Function Yes Function to call after the post completes.
Include Response Boolean No If true, result is a JSON Object

{
responseCode = HTTP RESONSE
CODE,
contentType = HTTP MIME TYPE
url = URL Requested
bytes= BYTES RECEIVED
}
Otherwise, it is content fetched over HTTP
parsed as though it’s a string (as before).

Returns
N/A

Example
Coming soon.

cancelTimer
Cancel, stop and clean up, a timer with the given ID.

DashBoard CustomPanel Development Guide ogScript Reference • 205

Note: For information about creating a timer function, see installTimer on page 231.

Syntax
ogscript.cancelTimer(Timer ID);

Parameters

Parameter Type Required Description
Timer ID String Yes ID of the timer to stop and clean up.

Returns
N/A

Example
//Stop the timer that was created with installTimer
ogscript.cancelTimer('myTimer');

closePanel
Closes the DashBoard panel that the command was called from.

Syntax
ogscript.closePanel();

Parameters
N/A

Returns
N/A

Example
// Close the panel that command is called from

ogscript.closePanel();

colorToHSL
Converts an RGB color to an HSL color

Color parameter must be either an integer representation of an RGB color, or a string representation of
an RBG color.

Syntax
ogscript.colorToHSL(int color);

ogscript.colorToHSL(string color);

Parameters

Parameter Type Required Description
color Int Yes Integer representation of RGB color (in

decimal)

206 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
color String Yes String representation of RGB color (in hex)

Returns
Returns a float array containing the HSL version of the color parameter.

Example
ogscript.colorToHSL(16777215);

ogscript.colorToHSL('#FFFFFF');

Will both return HSL for the color white

copyByteArray
Creates a full or partial copy of a byte array.

Syntax
ogscript.copyByteArray(src, offset, length)

Parameters

Parameter Type Required Description
src byte array Yes The byte array to be copied.
offset Integer Yes Index of the first byte to be copied. Use 0

for the start of the array.
length Integer Yes The number of bytes to copy.

Tip: To copy the entire array, use
src.length.

Returns
byte array

Example 1
In the following example, the contents of a byte array named srcArray are copied into a variable named
myCopy.
var myCopy=ogscript.copyByteArray(srcArray,0,srcArray.length);

Example 2
In the following example, the 20 bytes of a byte array named srcArray, starting at byte 4, are copied into
a variable named myCopy.
var myCopy=ogscript.copyByteArray(srcArray,4,20);

copyText
Copies text to the operating system's clipboard.

Syntax
ogscript.copyText(text);

DashBoard CustomPanel Development Guide ogScript Reference • 207

Parameters

Parameter Type Required Description
Text String Yes Text to be copied to clipboard.

Returns
N/A

Example
// Will set the system clipboard to the text "Hello World!"

ogscript.copyText('Hello World!');

createAMPSender
Creates a library of commands for controlling video servers using the Advanced Media Protocol (AMP).

Syntax
ogscript.createAMPSender();

Parameters
N/A

Returns
Returns an AMPCommands object.

Example
// To create and store a new AMP sender, you can use

var ampSender = ogscript.createAMPSender();

createAsyncExec
Creates a new asynchronous thread with the specified ID.

Syntax
ogscript.createAsyncExec(thread ID);

Parameters

Parameter Type Required Description
Thread ID String Yes Desired ID for new thread

Returns
Returns an asynchronous thread with the specified ID if it was created, null otherwise.

208 • ogScript Reference DashBoard CustomPanel Development Guide

Example
// Create and save an asynchronous thread with the id "new_thread"

var asyncThread = ogscript.createAsyncExec("new_thread");

createByteArray
Creates an empty byte array of a specified size.

Syntax
ogscript.createByteArray(length);

Parameters

Parameter Type Required Description
length Integer Yes The size of the new array, in bytes.

Returns
An empty byte array.

Example
var myNewByteArray = ogscript.createByteArray(12);

createFileInput
Accesses a file as a byte array with the same capabilities as MessageParser, to read raw bytes. See also
createMessageParser on page 210.

Syntax
ogscript.createFileInput(File path);

Parameters

Parameter Type Required Description
File path String Yes Path of the file to open (can be relative to

the panel)

Returns
FileInputParser (like MessageParser but with getSize(), close(), and
isClosed().

Example
// If we have a file object called fileObject, and we want to debug output it's size:

var fileInputParser = ogscript.createFileInput(fileObject);

var fileSize = fileInputParser.getSize();

ogscript.debug(fileSize);

createFileOutput
Creates a new file or appends to an existing file. Instead of saving XML or string data, gives access to
write raw bytes (or strings, or shorts, or ints, etc.). Also gives the ability to append to a file. Once open, it
does not close the file until the panel is closed or close() is called. This is handy for logging.

DashBoard CustomPanel Development Guide ogScript Reference • 209

Similar to MessageBuilder (see createMessageBuilder on page 209).

Syntax
ogscript.createFileOutput(File path, appendToExistingfile);

Parameters

Parameter Type Required Description
File path String Yes File path of the file to be created or

appended.
appendToExistingfile Boolean Yes When true, data is appended to existing

file.
When false, a new file is created.

Returns
FileOutputBuilder, which is same as MessageBuilder with added functions for clear() (overwrite
file), close(), getSize(), flush(), and isClosed().

Example
Coming soon.

createListener
Create a new listener with its own ID, settings, and task.

Syntax
ogscript.createListener(id, listenerSettings, listenerTask);

Parameters

Parameter Type Required Description
ID String Yes ID for new listener

Listener Settings Object Yes Settings for new listener

Listener Task Function
reference

Yes Task for new listener

Returns
Returns an IServerWithClose object, which contains functions close, setPort, start, and stop.

Example
ogscript.createListener('listener1', listener1Settings, listener1Task);

createMessageBuilder
Creates a message builder, which enables you to construct a message. The message is created as a byte
array, can contain multiple data types.

Syntax
ogscript.createMessageBuilder();

210 • ogScript Reference DashBoard CustomPanel Development Guide

Parameters
N/A

Returns
Returns a MessageBuilder object used to build byte arrays (generally for creating network messages).

Example
In the following example, a variable named myMessage is created to contain message content created
by a message builder. Then data of various data types are added to the message. The variable
messageArray is defined to contain the message content as a byte array.

Tip: You can use the createMessageParser function to parse messages.
var myMessage = ogscript.createMessageBuilder();

myMessage.writeBoolean(true); myMessage.writeByte(255);
myMessage.writeByte(255);

myMessage.writeShort(65535); myMessage.writeShort(65535);
myMessage.writeChar('a'); myMessage.writeInt(65536);
myMessage.writeLong(4294967296); myMessage.writeFloat(0.000001);
myMessage.writeDouble(0.000002); myMessage.writeString('abcd');

myMessage.writeUTF('Hello World'); //includes 2-byte length count

var messageArray = myMessage.toByteArray();

createMessageParser
Creates a message parser, which enables you to parse a message.

Syntax
ogscript.createMessageParser(messageBytes);

Parameters

Parameter Type Required Description
messageBytes byte array Yes The source byte array.

Returns
Returns a MessageParser object (generally used to parse the various pieces of messages received over
the network).

Example
In the following example, a variable named messageArray contains several pieces of data of various
data types to be extracted by a message parser. A variable named parsedMessage is created to contain
the extracted message content. Each element of the array is parsed and sent to the debug utility.

Tip: You can use the createMessageBuilder function to create messages.
var parsedMessage = ogscript.createMessageParser(messageArray);
ogscript.debug(parsedMessage.readBoolean());
ogscript.debug(parsedMessage.readByte());
ogscript.debug(parsedMessage.readUnsignedByte());
ogscript.debug(parsedMessage.readShort());
ogscript.debug(parsedMessage.readUnsignedShort());
ogscript.debug(parsedMessage.readChar());
ogscript.debug(parsedMessage.readInt());
ogscript.debug(parsedMessage.readLong());
ogscript.debug(parsedMessage.readFloat());
ogscript.debug(parsedMessage.readDouble());
ogscript.debug(parsedMessage.readString(4));
ogscript.debug(parsedMessage.readUTF());

DashBoard CustomPanel Development Guide ogScript Reference • 211

createVDCPSender
Creates a library of commands for using the video disk control protocol (VDCP).

Syntax
ogscript.createVDCPSender();

Parameters
N/A

Returns
Returns a VDCPCommands object.

Example
// Create a new VDCP Sender

var vdcpLibrary = ogscript.createVDCPSender();

debug
Write a string to the openGear Debug Information view.

The openGear Debug Information view must be open to view debug messages. To open the openGear
Debug Information view, select openGear Debug Information from the Views menu in DashBoard.

Syntax
ogscript.debug(Message);

Parameters

Parameter Type Required Description
Message String Yes Message to display in the openGear

Debug Information View.

Returns
N/A

Example 1
ogscript.debug('This is a message');

Example 2
var data = params.getValue(0x12,0);

ogscript.debug('Parameter 0x12 (score): ' + data);

Example 3
ogscript.debug('Parameter 0x12 (score): ' + params.getValue(0x12,0));

fireGPI
Sends a Trigger GPI message to panels. When buttons, labels, and displayed parameters that have a
matching GPI Trigger receive the message, their task lists are executed.

Tip: This function can be used for inter-panel communication, by triggering globally.

212 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
ogscript.fireGPI(Trigger, State, Global);

Parameters

Parameter Type Required Description
Trigger String Yes GPI Trigger message.

State String No Sends optional data string, which can be read
by the script.

Global Boolean Yes When true, applies to all open panels.
When false, applies only the panel initiating the
trigger.

Returns
N/A

Example
In this example, the GPI trigger message 'StartClock' and the state data 'ResetClock' are sent to all open
panels.
ogscript.fireGPI('StartClock','ResetClock',true);

focus
Sets the focus to a component with a specified ID.

Syntax
ogscript.focus(id);

Parameters

Parameter Type Required Description
ID String Yes Component ID to focus

Returns
N/A

Example
Coming soon.

ftp
Saves an object to a destination path on an FTP server. Useful to store statistics, images, and any other
data on a server.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference • 213

ogscript.ftp(host, port, username, password, destPath, destName, binary,
data);

Parameters

Parameter Type Required Description
Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Destination Path String Yes Data destination path

Destination Name String Yes Data destination name

Binary Boolean Yes True if data is binary (.jpg, .mp3), false if
data is ascii (.txt, .html).

Data Object Yes Data to be transferred

Returns
Returns an FTPResponse object which contains a boolean 'success', an object 'data', and an exception
'ex'.

Example
ogscript.ftp('localhost', 567, 'username', 'password', '/dashboard/', 'stats.txt', false, statTextObject);

ftpGet
Gets a file from the source path on an FTP server, and stores it in the destination object. Useful to grab
statistics, images, or any other data from a server.

Syntax
ogscript.ftpGet(host, port, username, password, srcPath, srcName, binary,
destination);

Parameters

Parameter Type Required Description
Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Source Path String Yes Source path

Source Name String Yes Source name

Binary Boolean Yes True if data is binary (.jpg, .mp3), false if
data is ascii (.txt, .html).

Destination File Object Yes Destination file object

214 • ogScript Reference DashBoard CustomPanel Development Guide

Returns
Returns an FTPResponse object which contains a boolean 'success', an object 'data', and an exception
'ex'.

Example
// Get a file stats.txt (ascii) from a directory "dashboard" on an ftp server

ogscript.ftpGet('localhost', 567, 'username', 'password', '/dashboard/', 'stats.txt', false, destinationObject);

ftpListFiles
Gets a list of all files at a specified directory on an FTP server.

Returns an array of FTPFile objects, on which the following methods can be called:

- file.getName()

- file.getTimestamp() (is a java.util.Calendar object)

- file.getSize()

- file.isFile()

- file.isDirectory()

Syntax
ogscript.ftpListFiles(host, port, username, password, srcPath);

ogscript.ftpListFiles(host, port, username, password, srcPath, fileName);

Parameters

Parameter Type Required Description
Host String Yes Host address

Port Int Yes Host port

Username String Yes Login username

Password String Yes Login password

Source Path String Yes Source path

File Name String No Source file name

Returns
Returns an array of FTPFile objects.

FTPFile class is used to represent information about files stored on an FTP server.

Example
// Gets a list of all files under the /photos/ directory on the FTP server

ogscript.ftpListFiles('localhost', 557. 'username', 'password', '/photos/');

DashBoard CustomPanel Development Guide ogScript Reference • 215

getAllById
Get all Objects accessible in the current context that have the associated ID.

Syntax
ogscript.getAllById(Object ID);

Parameters

Parameter Type Required Description
Object ID String Yes ID of the objects in the current context to

get.

Returns
Object []

Example
Coming soon.

getApplicationPath
Returns the path to the installation location of DashBoard.

Syntax
ogscript.getApplicationPath();

Parameters
N/A

Returns
Returns a String representation of the path to the DashBoard installation location.

Example
// Get and store dashboard installation loca

var dashboardLocation = ogscript.getApplicationPath();

getAsyncExecById
Finds and returns an asynchronous thread with a specified ID.

Syntax
ogscript.getAsyncExecById(thread id);

Parameters

Parameter Type Required Description
Thread ID String Yes ID of desired thread.

Returns
Returns an asynchronous thread with the specified ID if one was found; otherwise null.

216 • ogScript Reference DashBoard CustomPanel Development Guide

Example
// If we have an asynchronous thread with the id "thread1", we can get it using

ogscript.getAsyncExecById('thread1');

getAttribute
Get an attribute registered in the context with the given ID.

Syntax
ogscript.getAttribute(Attribute ID);

Parameters

Parameter Type Required Description
Attribute ID String Yes ID from which to get a registered in context

attribute.

Returns
Object

Example
Coming soon.

getBrowserById
Finds and returns a browser object with a specified ID. If browser with specified ID was not found,
returns null.

Syntax
ogscript.getBrowserById(BrowserID);

Parameters

Parameter Type Required Description
Browser ID String Yes ID of browser to look for.

Returns
If found, returns a browser element with the specified ID, null otherwise.

Example
// Get the browser with the ID "TestBrowser"

ogscript.getBrowserById("TestBrowser");

getBuild
Returns the DashBoard version number. This is the same version number you see in DashBoard if you
click About DashBoard on the Help menu.

DashBoard CustomPanel Development Guide ogScript Reference • 217

Syntax
ogscript.getBuild();

Parameters
N/A

Returns
DashBoard version number, similar to the following:
Version 7.0.0I 2015-06-12 T09:54

getComponentsById
Get all Java Swing components accessible in the current context that have the associated ID.

Syntax
ogscript.getComponentsById(Object ID);

Parameters

Parameter Type Required Description
Object ID String Yes ID from which to get all Java Swing

components accessible in the current
context.

Returns
Component []

Example
Coming soon.

getContextId
Gets and returns the current context ID if it exists.

Syntax
ogscript.getContextId();

Parameters
N/A

Returns
Returns a string representation of the context ID if it exists; otherwise null.

Example
// Get the current context ID

var contextID = ogscript.getContextId();

218 • ogScript Reference DashBoard CustomPanel Development Guide

getCurrentUser
Returns the username of the current DashBoard user.

When a User Rights Management server is present, this function returns the username of the user
signed-in to DashBoard.

When no User Rights Management Server is found, this function returns the computer account name.

Syntax
ogscript.getCurrentUser();

Parameters
N/A

Returns
String

Example
This example uses the getCurrentUser function to read the user name, and then uses the rename function
to rename a label. For more information about the rename function, see rename on page 237.

The label is defined in the .grid file as follows:
<label height="49" id="Welcome Label" left="136" name="Welcome" style="txt-
align:west;" top="275" width="188"/>

The script to read the user name and then rename the label is as follows:
//read the login user name

var loginName = ogscript.getCurrentUser();

//display the user name in the Welcome label var message = 'Welcome ' +
loginName; ogscript.rename('Welcome Label',message);

getFile
Finds and returns a file at a given path.

Syntax
ogscript.getFile(filePath);

Parameters

Parameter Type Required Description
filePath String Yes Path to desired file

Returns
Returns the File object found at the specified path if it was found, null otherwise.

Example
// Get a file from the path "C://Users/John/Desktop/test.txt"

var file = ogscript.getFile('C://Users/John/Desktop/test.txt');

DashBoard CustomPanel Development Guide ogScript Reference • 219

getFileSize
Used to find the size (in bytes) of a file at a specified path.

Syntax
ogscript.getFileSize(filePath);

Parameters

Parameter Type Required Description
filePath String Yes Path to desired file

Returns
Returns a long equal to the size of the file in bytes.

Example
// Save the size of the file located at "C://Users/John/Desktop/helloworld.txt"

var fileSize = ogscript.getFileSize('C://Users/John/Desktop/helloworld.txt');

getImageById
Finds and returns an image with a specified ID.

Syntax
ogscript.getImageById(imageID);

Parameters

Parameter Type Required Description
Image ID String Yes ID of desired image

Returns
Returns an image if one matching the ID was found, null otherwise.

Example
// Find and return an image with the id "image1"

ogscript.getImageById('image1');

getIncludeById
Returns the first include with the given ID. The include must have been created using the <include> tag.

Syntax
ogscript.getIncludeById(Include ID);

Parameters

Parameter Type Required Description
Include ID String Yes ID of the include to find.

220 • ogScript Reference DashBoard CustomPanel Development Guide

Returns
IncludeReloadableContainer

Example
Coming soon.

getListenerById
Starts or stops a listener. Can also check whether a listener is started.

Syntax
ogscript.getListenerById(ID);

Parameters

Parameter Type Required Description
ID String Yes ID of the listener.

Returns
getListenerById returns an object representing the listener.

This object has three public methods you can call: start(), stop(), and isStarted().

The return depends on which of the three methods is used:

• If the start() method is used, return is true if the listener started successfully; otherwise false.
• If the stop() method is used, return is true if the listener stopped successfully; otherwise false.
• If the isStarted() method is used, return is true if the listener is started; otherwise false.

Example
var myListener = ogscript.getListenerById("myId"); myListener.start();

myListener.stop();

myListener.isStarted();

getModificationDate
Retrieves the time the specified file was last modified.

Syntax
ogscript.getModificationDate(file path);

Parameters

Parameter Type Required Description
File path String Yes Path to the file.

Returns
Returns the time the specified file was last modified, in Unix Epoch time (also known as POSIX time),
as a LONG value.

Example
Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference • 221

getObject
You can create an object and reference it in other parts of the code. Some possible uses include:

• Storing parsed XML data in an object so you don’t have to re-parse it.
• Storing the results of an async HTTP post so you don’t have to re-fetch it.
• Storing connection code so you cna reference it wherever your code needs to establish that

connection.

The getObject function works in conjunction with the putObject function. The putObject function
defines the object. The getObject function references the object. The scope of a defined object is global,
so you can reference it from anywhere in your panel code.

For information about the putObject function, see putObject on page 234.

Syntax
ogscript.getObject(Key);

Parameters

Parameter Type Required Description
Key String Yes The name used to reference what is being

stored.

Returns
String.

Example
The following example parses and stores data from an XML file in a variable so it can be used globally
without the need to re-parse the XML data each time you want to use it.

It defines a function named loadTheXML, which uses the parseXML function to retrieve XML data
from a file and load it into a variable named myObject. It then uses the putObject function to copy the
data into a variable named myXML. The readTheXML function loads the data into a variable named
otherObject.
function loadTheXML()

{

var myObject = ogscript.parseXML('file:/c:/mydocument.xml');
ogscript.putObject('myXML',myObject);

}

function readTheXML()

{

var otherObject = ogscript.getObject('myXML');

// Do anything you want with the data, now contained in the otherObject
variable.

}

getPanelPath
Gets the path of the panel the function was called by.

Syntax
ogscript.getPanelPath();

222 • ogScript Reference DashBoard CustomPanel Development Guide

Parameters
N/A

Returns
Returns a String representation of the path to the calling panel.

Example
// If the calling panel is stored at "C:\Users\Test\DashBoard\" on the disk,

ogscript.getPanelPath();

// will return "C:\Users\Test\DashBoard\"

getPanelRelativeURL
Gets the full URL of a path with respect to the panel it is called from. Could be used to get the full path
of an "images" or "stats" directory.

Syntax
ogscript.getPanelRelativeURL(path);

Parameters

Parameter Type Required Description
path String Yes Relative path

Returns
Returns a String representing the full path of the relative path with respect to the panel's path.

Example
// If we have a panel stored at C:\Users\Test\Panels\ and we store images in a // directory \Images\
located in the same \Panels\ folder that the panel itself is located in, we can // use the line

ogscript.getPanelRelativeURL('\Images\');

// to get the String "C:\Users\Test\Panels\Images\".

getPosition
Retrieves the horizontal (x) and vertical (y) position of a panel object, in pixels.

Syntax
ogscript.getPosition(ID);

Parameters

Parameter Type Required Description
ID String Yes The ID of the panel object.

Returns
JAVA point object containing public variables x and y, populated with values for the horizontal (y) and
vertical (y) position of the object, in pixels.

DashBoard CustomPanel Development Guide ogScript Reference • 223

Example
The following example draws a label that can be resized and repositioned. When the user drags the
middle of the label, it moves. When the user drags the bottom right corner of the label, the label is
resized.
<abs bottom="0" contexttype="opengear" left="0" right="0" top="0">

<meta>

<ogscript handles="onmousedown" targetid="move-label">var size =
ogscript.getSize('move-label');

if (event.getX() < size.width - 10 && event.y <
size.height - 10)

{

ogscript.putObject('mode', 'move');

ogscript.putObject('position', ogscript.getPosition('move-label'));
ogscript.putObject('offsetX', event.x);
ogscript.putObject('offsetY', event.y);

}

else

{

ogscript.putObject('mode', 'size');

}

</ogscript>

<ogscript handles="ondrag" targetid="move-label">

if (ogscript.getObject('mode') == 'size')

{

ogscript.setSize('move-label', event.getX(), event.getY());

}

else if (ogscript.getObject('mode') == 'move')

{

var origin = ogscript.getObject('position'); var offsetX =
ogscript.getObject('offsetX');

var offsetY = ogscript.getObject('offsetY');

ogscript.reposition('move-label', origin.x + event.x - offsetX,
origin.y + event.y - offsetY);

ogscript.putObject('position', ogscript.getPosition('move-label'));

}

</ogscript>

</meta>

<label height="116" id="move-label" left="27" style="bdr:etched;bg#FF0000"
top="38" width="215"/>

</abs>

getPrivateString
Get a string defined in a private lookup table that matches the specified lookup ID.

Note: Use the getPrivateString function if the lookup table has an ID. If the lookup table has no ID, use
the getString function. For more information about the getString function, see getString on page 225.

Syntax
ogscript.getPrivateString(Lookup ID, Key);

Parameters

224 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
Lookup ID String Yes ID of the string to find in the specified

lookup table.

Key String Yes Private lookup table in which to find the
specified string.

Returns
String

Example
This example uses the getPrivateString function to read an IP address stored in a lookup table. The
lookup table is defined at the beginning of the .grid file, and can be accessed by any script.

The lookup table definition for this example is as follows:
<lookup id="hosts">

<entry key="XPression.host">10.0.2.210</entry>

<entry key="XPression.port">7788</entry>

</lookup>

The script to read an entry from the lookup table is as follows:
//Get the IP Address associated with entry key XPression.host

var host = ogscript.getPrivateString('hosts','XPression.host');

getScopedAttribute
Get an attribute in the named scope that has the given ID. Scopes are often internally defined by
DashBoard.

Syntax
ogscript.getScopedAttribute(Scope Name, Attribute ID);

Parameters

Parameter Type Required Description
Scope Name String Yes Name of the scope in which to get and

attribute.

Attribute ID String Yes ID of the attribute to get in the named
scope.

Returns
Object

Example
Coming soon.

getSize
Retrieves the width and height of the specified panel object, in pixels.

Syntax
ogscript.getSize(ID);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference • 225

Parameter Type Required Description
ID String Yes ID of the panel object.

Returns
Dimension object with d.width and d.height available.

Example
The following example draws a label that can be resized and repositioned. When the user drags the
middle of the label, it moves. When the user drags the bottom right corner of the label, the label is
resized.
<abs bottom="0" contexttype="opengear" left="0" right="0" top="0">

<meta>

<ogscript handles="onmousedown" targetid="move-label">var size =
ogscript.getSize('move-label');

if (event.getX() < size.width - 10 && event.y <
size.height - 10)

{

ogscript.putObject('mode', 'move'); ogscript.putObject('position',
ogscript.getPosition('move-label')); ogscript.putObject('offsetX',
event.x); ogscript.putObject('offsetY', event.y);

}

else

{

ogscript.putObject('mode', 'size');

}

</ogscript>

<ogscript handles="ondrag" targetid="move-label">

if (ogscript.getObject('mode') == 'size')

{

ogscript.setSize('move-label', event.getX(), event.getY());

}

else if (ogscript.getObject('mode') == 'move')

{

var origin = ogscript.getObject('position'); var offsetX =
ogscript.getObject('offsetX'); var offsetY =
ogscript.getObject('offsetY');

ogscript.reposition('move-label', origin.x + event.x - offsetX,
origin.y + event.y - offsetY);

ogscript.putObject('position', ogscript.getPosition('move-label'));

}

</ogscript>

</meta>

<label height="116" id="move-label" left="27" style="bdr:etched;bg#FF0000"
top="38" width="215"/>

</abs>

getString
Get a string defined in the global lookup table.

Note: Use the getString function if the lookup table has no ID. If the lookup table has an ID, use the
getPrivateString function. For more information about the getPrivateString function, see
getPrivateString on page 223.

Syntax

226 • ogScript Reference DashBoard CustomPanel Development Guide

ogscript.getString(Key);

Parameters

Parameter Type Required Description
Key String Yes Private lookup table from which to get

string.

Returns
Object

Example
This example uses the getString function to read an IP address stored in a lookup table. The lookup table
definition for this example is as follows:
<lookup>

<entry key="Tom">television</entry>

</lookup>

The script to read an entry from the lookup table is as follows:
//Get the string associated with entry key Tom

ogscript.getString('Tom');

getTimerManager
Get the timer manager for the context to access timers and perform operations on selected timers.

Syntax
ogscript.getTimerManager();

Parameters
N/A

Methods
The getTimerManager function is an object that has several methods. The following methods can be run
on an existing timer. A timer can be created using the installTimer function or using the graphical
editor. For more information about the installTimer function, see installTimer on page 231.

Method

Parameter
Required

Description

isRunning() N/A Checks whether the time is running.
startTimer(Boolean reset) Yes

true or false
Starts the timer.
If the boolean parameter is set to true, the
timer resets to the starting time when the
function is performed.
If the boolean parameter is set to false, the
function is performed at the timer's current
time.

stopTimer(Boolean reset) Yes
true or false

Stops the timer.
If the boolean parameter is set to true, the
timer resets to the starting time when the
function is performed.
If the boolean parameter is set to false, the
function is performed at the timer's current
time.

resetTimer() N/A Resets the timer to the start time.

DashBoard CustomPanel Development Guide ogScript Reference • 227

Method

Parameter
Required

Description

setStart(Long valueInMilliseconds) Yes
Milliseconds
(Long)

Sets the start time of the timer.

setStop(Long valueInMilliseconds) Yes
Milliseconds
(Long)

Sets the stop time of the timer.

setTime(Long valueInMilliseconds) Yes
Milliseconds
(Long)

Sets the current time of the timer.

getStart() N/A Returns the timer’s start time in
milliseconds (Long).

getStop() N/A Returns the timer’s stop time in
milliseconds (Long).

getCurrent() N/A Returns the timer’s current value in
milliseconds (Long).

incrementTime(Long difference) Yes
Milliseconds
(Long)

Increments the timer value by the specified
number of milliseconds

setPattern(String dateTimePattern) Yes
Time format
definition

Sets the time format pattern for displaying
time values.

Returns
ContextTimerManager

Example 1 — getTimerManager function using isRunning method
//verify if timer named 'selftimer' is currently running

if (ogscript.getTimerManager().getTimer('selftimer').isRunning())

{

ogscript.debug('running = true');

}

else

{

ogscript.debug('running = false');

}

Example 2 — getTimerManager function using startTimer method
//Starts a timer named 'selftimer'
ogscript.getTimerManager().getTimer('selftimer').startTimer(false);

Example 3 — getTimerManager function using stopTimer method
//Stops a timer named 'selftimer'
ogscript.getTimerManager().getTimer('selftimer').stopTimer(false);

Example 4 — getTimerManager function using resetTimer method
//Resets a timer named 'selftimer' to the start time
ogscript.getTimerManager().getTimer('selftimer').resetTimer();

Example 5 — getTimerManager function using setStart method
//Set the start time of a timer named 'selftimer' to 30 seconds (30000ms)

ogscript.getTimerManager().getTimer('selftimer').setStart(30000);

228 • ogScript Reference DashBoard CustomPanel Development Guide

Example 6 — getTimerManager function using setStop method
//Set the stop time of a timer named 'selftimer' to two minutes (120000 ms)

ogscript.getTimerManager().getTimer('selftimer').setStop(120000);

Example 7 — getTimerManager function using setTime method
//Set the current time of a timer named 'selftimer' to 59 seconds (59000 ms)

ogscript.getTimerManager().getTimer('selftimer').setTime(59000);

Example 8 — getTimerManager function using getStart method
// Get the start time of a timer named 'selftimer'

var startTime =
ogscript.getTimerManager().getTimer('selftimer').getStart();

Example 9 — getTimerManager function using getStop method
// Get the stop time of a timer named 'selftimer'

var stopTime =
ogscript.getTimerManager().getTimer('selftimer').getStop();

Example 10 — getTimerManager function using getCurrent method
// Get the current time of a timer named 'selftimer'

var currentTime =
ogscript.getTimerManager().getTimer('selftimer').getCurrent();

Example 11 — getTimerManager function using incrementTime method
//increase the current time of a timer named 'selftimer' by 30 seconds

ogscript.getTimerManager().getTimer('selftimer').incrementTime(30000)

;

//decrease the current time of a timer named 'selftimer' by 5 seconds
ogscript.getTimerManager().getTimer('selftimer').incrementTime(-5000)

;

Example 12 — getTimerManager function using setPattern method
The following table describes the syntax for setting the time format. For some formats, repeating the
letter returns more digits or a variation of the format. For example, when specifying M for month, one
M shows the month number with no leading zero, two Ms adds a leading zero for months 0 to 9, three
Ms shows the three letter month (such as Jan), and four or more Ms shows the full month name (such as
January).

Letter

Date or Time
Component

Presentation

Examples

D Day Number 189
H Hour of the day (0-23) Number 8
m Minute of the hour Number 30
s Second of the minute Number 55
S Millisecond Number 768
G Era designator Text AD
Y Year Number 1969; 69
M Month of the year Text or number September; Sep; 09

w Week of the year Number 27

W Week of the month Number 3

d Day of the month Number 12

DashBoard CustomPanel Development Guide ogScript Reference • 229

Letter

Date or Time
Component

Presentation

Examples

F Day of the week in the
month

Number 1
If the day of the week is
Tuesday, 1 would
denote the first
Tuesday of the month

E Day of the week Text Friday; Fri

k Hour of the day (1-24) Number 22

K Hour in AM/PM (0-11) Number 0

h Hour in AM/PM (1-12 Number 10

a AM/PM marker Text PM

z Time zone General Time Zone Pacific Standard Time,
PST,

Z Time zone RFC 822 time zone -0800

The following code example returns the date and time. An example of the date and time as returned by
this example is Sep 30, 2013 2:35:34 PM.
//Sets the display format of a timer named 'simpleclock' to show full date and
time

ogscript.getTimerManager().getTimer('simpleclock').setPattern('MMM dd, yyyy
h:mm:ss a');

hide
Hide the popup associated with the specified ID.

Note: to use the hide function, a popup must already exist. Popups can be created only in the JavaScript
source, not in DashBoard.

Syntax
ogscript.hide(Popup ID);

Parameters

Parameter Type Required Description
Popup ID String Yes ID of the popup to hide.

Returns
N/A

Example
This example includes two sections of XML code to be added to the .grid file. The first creates a button
that opens a popup. The second creates a button that hides the popup.
//This example creates a button which, when clicked by a user, opens the popup
area.

<popup id="popup1" left="20" name="Click here to open the Popup" top="25">

<abs height="300" left="200" style="bdr:etched;" top="200" width="300">

</abs>

</popup>

//This example creates a button which, when clicked by a user, hides the
popup.

<button buttontype="push" height="50" left="50" name="Click here to hide the

230 • ogScript Reference DashBoard CustomPanel Development Guide

Popup" top="500" width="200">

<task tasktype="ogscript">ogscript.hide('popup1');</task>

</button>

hslToColorString
Converts a float array containing HSL data (hue, saturation, lightness) to a color string (Color string
displays the color in hexadecimal).

Syntax
ogscript.hslToColorString(hslFloat[]);

Parameters

Parameter Type Required Description
HSL Float Array Float32_Array Yes Float array – first element is hue, second

element is saturation, third element is
lightness.

Returns
Returns a hex string representation of the HSL color; if HSL float array was invalid, returns null.

Example
// If we have an hslFloat array containing 91 in index 0, 0.89 in index 1, and 0.61 in index 2

ogscript.hslToColorString(hslFloatArray);

// Returns the string "#98F442"

http
Used to fetch content from a web server or call restful API.

Syntax
ogscript.http(URL, method, requestContentType, dataObject, includeResponse);

Parameters

Parameter Type Required Description
URL String Yes http URL

Method String Yes The method for the URL request, one of:
GET POST HEAD OPTIONS PUT DELETE
TRACE are legal, subject to protocol
restrictions.

Request Content
Type

String Yes The content type of the request.

Data Object Object Yes Data can be a string, byte array, XML, or
JSON object

Include Response Boolean Yes True to include response; otherwise false.

Returns

DashBoard CustomPanel Development Guide ogScript Reference • 231

Returns either string data or a JSON object.

Example
Coming soon.

installTimer
Create a timer with the given ID and register it in the ContextTimerManager. Start the timer after the
specified delay. If requested, repeat the timer at the specified frequency. When the timer fires, run the
specified ogScript function.

Syntax
ogscript.installTimer (Timer ID, Repeat, Delay, Repeat Delay, Task);

ogscript.installTimer (Timer ID, Repeat, Delay, Repeat Delay, Boolean, Task);

Parameters

Parameter Type Required Description
Timer ID String Yes ID of the timer to create and register in the

ContextTimerManager.
Repeat Boolean Yes true — repeat the timer using the specified

Delay and Repeat Delay.
false — only run the timer once, do not
repeat the timer.

Delay Long Yes Number of milliseconds to wait before
starting the timer.

Repeat Delay Long Yes How frequently the associated function
runs, in milliseconds.

Execute in Timer Boolean No If true, task will execute in timer thread
Task Function Yes ogScript function to run when the timer

fires.

Returns
N/A

Example
This example creates a label named "Time" and a button named "Install Timer". When a user clicks the
"Install Timer" button, an associated task runs a function named myFunction (), which creates a timer.

It also retrieves the time value every 30 seconds, and loads it into a variable named str which is
displayed on the "Time" label. The myFunction () function uses the installTimer function to create the
timer and set the rate at which the time data is updated.
<label height="80" id="timeLabel" left="43" name="Time" style="txt-
align:west" top="26" width="275"/>

<button buttontype="push" height="57" left="48" name="Install Timer"
top="133" width="184">

<task tasktype="ogscript">function myFunction()

{

var date = new Date();

var str = date.getHours() + ':' + date.getMinutes() + ':' +
date.getSeconds();

ogscript.rename('timeLabel', 'Time: ' + str);

}

//create a timer that starts immediately and runs myFunction every 30

232 • ogScript Reference DashBoard CustomPanel Development Guide

seconds (30000 milliseconds)

ogscript.installTimer('myTimer', true, 0, 30000, myFunction);

</task>

</button>

isClosed
Will return true if the context is closed or does not exist, and false otherwise.

‘closed’ means that the tab is closed, DashBoard is closed, or the panel is reloaded.

Syntax
ogscript.isClosed();

Parameters
N/A

Returns
Returns true if the context is closed or does not exist; otherwise false.

Example
// Get if the context is closed.

var closed = ogscript.isClosed();

isTimerRunning
Report whether or not a timer exists and is in the “running” state.

Syntax
ogscript.isTimerRunning(Timer ID);

Parameters

Parameter Type Required Description
Timer ID String Yes true — a timer with the given ID exits and is in

the “running” state.
false — a timer with the give ID does not exist
or is not in the “running” state.

Returns
Boolean

Example
//verify if the timer is currently running

var runtime = ogscript.isTimerRunning('selftimer');

jsonToString
Transforms a JSON object into a String.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference • 233

ogscript.jsonToString(NativeObject);

Parameters

Parameter Type Required Description
JSON native object NativeObject Yes The JSON to be converted to a String

Returns
Returns a String representation of the JSON native object.

Example
// If we have a JSON object named jsonObj, we can convert it to a string using:

var jsonString = ogscript.jsonToString(jsonObj);

parseXML
Parse and return an XML document using the org.w3c.dom.Document API. The XML document to parse
can be provided in the following ways:

• Piece of well-formatted XML
• URL relative to a CustomPanel
• File URL (file:/c:/…)
• http URL (http://…)

The document is loaded via a blocking call that is run in the DashBoard User Interface thread.

Calls to load documents over a network (for example, using http://) are strongly discouraged and can
have undesired impacts on the UI performance.

Syntax
ogscript.parseXML(Document);

Parameters

Parameter Type Required Description
Document String Yes XML document to parse.

Returns
XML Document

For more information about returns, refer to the following URL:

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

234 • ogScript Reference DashBoard CustomPanel Development Guide

Example
The following example loads an XML file from the web using an asynchronous http request. An XPath
expression extracts data from the XML and displays it on a label.
function myFunc(pageContent)

{

var xmlPageContent = '<?xml version="1.0" encoding="UTF-8"?>\n' +
pageContent;

var document = ogscript.parseXML(xmlPageContent); var nodeList =

ogscript.runXPath('/response/sports/sportsItem/leagues/leaguesIt

em/teams/teamsItem/name', document); var teamList = '<html>';
ogscript.debug(nodeList.getLength());

for (var i = 0; i < nodeList.getLength(); i++)

{

teamList = teamList + nodeList.item(i).getTextContent() +
'
';

}

ogscript.rename('resultLabel', teamList + '</html>');

}

ogscript.asyncPost('http://api.oursports.com/v1/sports/hockey/league/
teams/?_accept=text%6Axml&apikey=ksjdur7euejru47fkbos85kg', null,
myFunc);

pasteText
Gets the contents of the operating system clipboard, if the contents can be represented as a string.

Syntax
ogscript.pasteText();

Parameters
N/A

Returns
Returns a String containing the contents of the system clipboard.

Example
// If the system clipboard contains the text "Hello World!"

ogscript.pasteText();

// will return a string containing "Hello World!"

putObject
You can create an object and reference it in other parts of the code. Some possible uses include:

• Storing parsed XML data in an object so you don’t have to re-parse it.
• Storing the results of an async HTTP post so you don’t have to re-fetch it.
• Storing connection code so you cna reference it wherever your code needs to establish that

connection.

The putObject function works in conjunction with the getObject function. The putObject function
defines the object. The getObject function references the object. The scope of a defined object is global,
so you can reference it from anywhere in your panel code.

For information about the getObject function, see getObject on page 221.

http://api.oursports.com/v1/sports/hockey/league/

DashBoard CustomPanel Development Guide ogScript Reference • 235

Syntax
ogscript.putObject(Key, Value);

Parameters

Parameter Type Required Description
Key String Yes The name of the object in which the data is

being stored.

Value String Yes The value to be stored.

Returns
N/A.

Example
The following example parses and stores data from an XML file in a variable so it can be used globally
without the need to re-parse the XML data each time you want to use it.

It defines a function named loadTheXML, which uses the parseXML function to retrieve XML data
from a file and load it into a variable named myObject. It then uses the putObject function to copy the
data into a variable named myXML. The readTheXML function loads the data into a variable named
otherObject.
function loadTheXML()

{

var myObject = ogscript.parseXML('file:/c:/mydocument.xml');
ogscript.putObject('myXML',myObject);

}

function readTheXML()

{

var otherObject = ogscript.getObject('myXML');

// Do anything you want with the data, now contained in the otherObject
variable.

}

putPrivateString
Add or replace a string in a private lookup table.

Note: Use the putPrivateString function if the lookup table has an ID. If the lookup table has no ID, use
the putString function. For more information about the putString function, see putString on page 236.

Syntax
ogscript.putPrivateString(Lookup ID, Key, Value);

Parameters

Parameter Type Required Description
Lookup ID String Yes ID of the string to create or replace in the

specified lookup table.
Key String Yes Private lookup table in which to create or

replace the specified string.
Value String Yes New value for the specified string.

Returns
N/A

236 • ogScript Reference DashBoard CustomPanel Development Guide

Example
This example uses the putPrivateString function to replace a datum in a lookup table. The lookup table
definition for this example is as follows:
<lookup id="hosts">

<entry key="XPression.host">10.0.2.210</entry>

<entry key="XPression.port">9999</entry>

</lookup>

The script to replace an entry in the lookup table is as follows:
//Replace the port number associated with entry key XPression.host
ogscript.putPrivateString('hosts','XPression.port', '7788');

putString
Add or replace a string in the global lookup table.

Note: Use the putPrivateString function if the lookup table has no ID. If the lookup table has an ID, use
the putPrivateString function. For more information about the putPrivateString function, see
putPrivateString on page 235.

Syntax
ogscript.putString(Lookup ID, Value);

Parameters

Parameter Type Required Description
Lookup ID String Yes ID of the string to create or replace in the

global lookup table.
Value String Yes New value for the specified string.

Returns
N/A

Example
This example uses the putString function to replace a datum in a lookup table. The lookup table
definition for this example is as follows:
<lookup>

<entry key="Tom">television</entry>

</lookup>

The script to replace an entry in the lookup table is as follows:
//Replace the string associated with entry key Tom
ogscript.putString('Tom','telephone');

reload
Rebuild the user interface element with the specified ID. If the ID is for an <include> tag, re-fetch the
included document before rebuilding the user interface.

If no ID is provided, rebuilds the entire document.

Syntax
ogscript.reload(User Interface ID);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference • 237

Parameter Type Required Description
User Interface ID String Yes ID of the user interface element to rebuild.

Returns
Null, if null is provided as the ID.

Example
In this example, the ogscript.reload function is used to rebuild a drop-down list to show new options.
//create a new array of colours

var color = new Array("Red","Green","Blue");

//populate the dropdown color_list with the color array

params.replaceIdentifiedConstraint('color_list',
params.createIntChoiceConstraint(color));

//reload the dropdown list to view the new options
ogscript.reload('color_list');

rename
Modify the text associated with a tab name, label, or button. Use the Component ID to specify the
component to rename. Do not use the Object ID (OID).

To view the ID of a component, double-click the component in PanelBuilder to open the Edit
Component dialog box. The ID box displays the ID of the selected component.

ID — use the ID
displayed in this box to
identify the component
to rename.

Figure 99 - Component ID in the Edit Component dialog box

Syntax
ogscript.rename(Component ID, Name);

Parameters

Parameter Type Required Description
Component ID String Yes ID of the user interface component to

rename.
Name String Yes New text to display on the screen for the

specified user interface component.

Returns
N/A

Example 1
// Set the item with ID='Seat 5' to have the text 'Mika Andersen'
ogscript.rename ('Seat 5','Mika Andersen');

238 • ogScript Reference DashBoard CustomPanel Development Guide

Example 2
// Read the value of a parameter into a variable named data

var data = params.getValue(0x12,0);

// Use the variable named data to make a new ID and set the ID to have the text
'Mika Andersen'

ogscript.rename('Seat ' + data,'Mika Andersen');

reposition
Moves a component to an absolute position, defined as an X - Y pixel position.

Alternatively, you can specify a component’s position by percentage of the container’s width and
height. For more information, see repositionByPercent on page 238.

Syntax
ogscript.reposition(ID, x position, y position);

Parameters

Parameter Type Required Description
ID String Yes ID of the component you want to reposition
x position Integer Yes Number of pixels from the left
y position Integer Yes Number of pixels from the right

Returns
N/A

Example
In this example, the task associated with the “Top Left” button uses the ogscript.reposition function to
reposition a label.
<label height="40" id="myLabel" left="160" name="myLabel" style="txt-
align:center" top="100" width="160"/>

<button buttontype="push" height="40" left="160" name="Top Left" top="200"
width="160">

<task tasktype="ogscript">ogscript.reposition('myLabel', 0, 0);

</task>

</button>

repositionByPercent
Moves a component to an absolute position, defined as a percentage of container width and height.

Alternatively, you can specify a component’s position by pixel. For more information, see reposition on
page 238.

Syntax
ogscript.repositionByPercent(OID, x percent, y percent, center x, center y);

Parameters

Parameter Type Required Description
OID String Yes OID of the component you want to

reposition
x percent Integer Yes Distance from the left, as a percentage of

DashBoard CustomPanel Development Guide ogScript Reference • 239

Parameter Type Required Description
container width

y percent Integer Yes Distance from the top, as a percentage of
container height

center x Boolean Yes true — Shows the full width of the object.
false — Crops the object if it extends
beyond the horizontal boundaries of the
container.

center y Boolean Yes true — Shows the full height of the object.
false — Crops the object if it extends
beyond the vertical boundaries of the
container.

Returns
N/A

Example

In this example, the task associated with the One Quarter button uses the ogscript.repositionByPercent
function to reposition a label 25% from the left, and 25% from the top. Centering is set to false in both
the x and y axes, so if the label overhangs the edges of the container the overhanging portion is not
shown.
<label height="41" id="myLabel" left="160" name="myLabel" style="txt-
align:center" top="101" width="160"/>

<button buttontype="push" height="40" left="160" name="One Quarter" top="200"
width="159">

<task tasktype="ogscript">ogscript.repositionByPercent('myLabel', 25, 25,
false, false);

</task>

</button>

reveal
Open a popup with the specified ID, or bring the tab with the specified ID to the foreground.

This function is especially useful for tab sets that have their placement set to the center, meaning that
there are no tabs showing for users to click. Using the reveal function is the only way to display the
specified tab.

Syntax
ogscript.reveal(User Interface ID);

Parameters

Parameter Type Required Description
User Interface ID String Yes ID of the popup to open or the tab to bring

to the foreground.

Returns
N/A

Example
This example includes a definition for a set of tabs with its position set to center, and uses the
ogscript.reveal function to select a particular tab to be shown.
<tab height="91" left="580" top="373" width="221">

<abs id="page1" name="Tab 1"/>

240 • ogScript Reference DashBoard CustomPanel Development Guide

<abs id="page2" name="Tab 2"/>

<abs id="page3" name="Tab 3"/>

</tab>

//Select Tab2

ogscript.reveal('page2');

runXPath
Execute the given XPath command on the given XML Document or XML Element and return the
results as a NodeList.
ogscript.runXPath(XPath, Document);

or
ogscript.runXPath(XPath, Element);

Parameters

Parameter Type Required Description
XPath String Yes The XPath command to execute on the

given XML Document or XML Element
Document String Yes XML Document on which to execute the

given XPath command.
Element Yes XML Element on which to execute the

given XPath command.

For more information about the required parameters, refer to the following URLs:

• http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
• http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Element.html
• http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NodeList.html
http://www.w3schools.com/xml/xpath_intro.asp

Returns
NodeList

Example
Coming soon.

saveToFile
Saves data to a file. This function is typically used to save a byte array, string, or XML document to a
file.

Syntax
ogscript.saveToFile(path, data, overwrite);

Parameters

Parameter Type Required Description
path String Yes The directory path to the destination file.

data String, byte[], or
XML

Yes The data to be saved to file.

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Element.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NodeList.html
http://www.w3schools.com/xml/xpath_intro.asp
http://www.w3schools.com/xml/xpath_intro.asp

DashBoard CustomPanel Development Guide ogScript Reference • 241

Parameter Type Required Description
overwrite Boolean Yes When true, existing file of the same name

is overwritten.
When false, existing file of the same name
is not overwritten.

Returns
Returns true, if data is written successfully; otherwise false.

Example
ogscript.saveToFile('files/my-new-file.txt','This is my data',true);

sendUDPAsBytes
Converts ASCII string data to a byte array, and sends it as bytes to the specified host/port through UDP.
The ASCII data is converted to Hexadecimal bytes, and can consist only of the following characters:

• 0 to 9
• A to F
• Spaces and commas (as delimiters)

Syntax
ogscript.sendUDPAsBytes(Host, Port, Data);

Parameters

Parameter Type Required Description
Host String Yes Host name to send the given data through

UDP.
Port Integer Yes Port number on the given host to be sent

given data through UDP.
Data ASCII string Yes Data to be converted to bytes and sent

through UDP to the specified host/port.

Returns
N/A

Example
ogscript.sendUDPAsBytes(myComputer, 7788,'7A, 3C, FF');

sendUDPBytes
Send the given data bytes to the specified host/port through UDP.

Syntax
ogscript.sendUDPBytes(Host, Port, Data);

Parameters

Parameter Type Required Description
Host String Yes Host name to send the given Data bytes

through UDP.
Port Integer Yes Port number on the given Host to send

given Data byte through UDP.

242 • ogScript Reference DashBoard CustomPanel Development Guide

Parameter Type Required Description
Data Byte Yes Data bytes to send through UDP to the

given Host and Port.

Returns
N/A

Example
Coming soon.

sendUDPString
Convert a string to UTF-8 bytes and send the bytes to the provided host/port through UDP.

Syntax
ogscript.sendUDPString(Host, Port, Data);

Parameters

Parameter Type Required Description
Host String Yes Host name to send the given Data string

through UDP.
Port Integer Yes Port number on the given Host to send

given Data string through UDP.
Data String Yes Data string to convert to bytes and send

through UDP to the given Host and Port.

Returns
N/A

Example
This example uses the sendUDPString function to send a message to a particular host/port.
var host = ogscript.getPrivateString('hosts',' Panel.host ');

var port = parseInt(ogscript.getPrivateString('hosts',' Panel.port '));

var message = "Hello, can you hear me?";

ogscript.sendUDPString(host,port,message);

setAnchorPoints
Specifies how an object moves if the user interface is resized for different monitor and window sizes.
Anchor points are relative to the container in which they are located (for example, a tab, a split pane,
etc.).

The setAnchorPoints function allows you to anchor or release an object to/from the top, left, bottom, or
right sides. By setting these values, you can effectively anchor an object to a corner, a side, or the
center.

Syntax
ogscript.setAnchorPoints(ID, top, left, bottom, right);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference • 243

Parameter Type Required Description
ID String Yes ID of the object you want to anchor.
top Boolean Yes true — object is anchored to the top

false — object is not anchored to the top
left Boolean Yes true — object is anchored to the left

false — object is not anchored to the left
bottom Boolean Yes true — object is anchored to the bottom

false — object is not anchored to the
bottom

right Boolean Yes true — object is anchored to the right
false — object is not anchored to the right

Returns
N/A

Example
The button in this example has a task that anchors an object (with ID 'dialog') to the top left.
<button buttontype="push" name="anchorTopLeft">

<task tasktype="ogscript">ogscript.setAnchorPoints('dialog', true, true,
false, false);

</task>

</button>

setSize
Resizes a panel object the to the specified width and height, in pixels. Valid only in <abs/> containers.

Syntax
ogscript.setSize(ID, width, height);

Parameters

Parameter Type Required Description
ID String Yes ID of the panel object to be resized. Valid

only in <abs/> containers.
width Integer Yes New width of the panel, in pixels.
height Integer Yes New height of the panel, in pixels.

Returns
N/A

Example
Coming soon.

setStyle
Set Style parameters for the component with the given ID if it exists. Style commands are additive.
They can be added or modified, but not removed.

Tip: To view syntax examples for particular styles, use the PanelBuilder user interface to add the style
on the Style tab, and then view the resulting code in the Source tab.

244 • ogScript Reference DashBoard CustomPanel Development Guide

Tip: If you start the ID of the controls inside the widget with a ‘.’, it will be scoped to the individual
widget.

For openGear Style Hints for the available style options, refer to the openGear documentation.

Syntax
ogscript.setStyle(Component ID, Style);

Parameters

Parameter Type Required Description
Component ID String Yes ID of the Component to style with the

given Style parameters.
Style String Yes Style parameters with which to style the

given Component.

Returns
N/A

Example 1
This example defines the style of a label, and then makes three style changes.
//label definition

<label height="45" id="label1" left="330" name="Change the style of this
label" style="txt-align:west;" top="100" width="325"/>

//first change - set the background to red
ogscript.setStyle('label1',"bg#FF0000");

//second change - set the text colour to black and text size to big
ogscript.setStyle('label1',"fg#000000;size:big");

//third change - modify the text alignment from left to right
ogscript.setStyle('label1',"txt-align:east");

Example 2
This example creates a pre-defined style, and applies it to a component. Pre-defined styles can add or
replace a component’s style settings, but not remove them.
//create a pre-defined style

<style id="Style1" name="Style1" value="size:Big;bg#6F63FB;bdr:etched;"/>

//Add a predefined Style to a component
ogscript.setStyle('label1',"style:Style1")

setXML
Dynamically generates UI components through ogscript. Replaces the contents of an element with a
string of XML code.

Notes:
• The .grid file is not affected by setXML() so its effects do not persist after the CustomPanel is

closed.
• setXML() is not synchronous with the calling code which can lead to subtle problems. For

example, if you used this method to instantiate a customwidget you would not be able to access it
on the line immediately following setXML() call.

• If used to inject OGLML that includes <ogscript/> either directly, or as part of a customwidget

DashBoard CustomPanel Development Guide ogScript Reference • 245

it's necessary to release any resources used by the injected objects before subsequently overwriting
the same <abs/>. Failure to do this will cause resource leaks, and possibly unwanted behaviour.

Syntax
ogscript.setXML(ID, new XML content)

Parameters

Parameter Type Required Description
ID String Yes ID of the component in which you want to

replace XML
new XML content String Yes The new XML content

Returns
N/A

Example 1
This simplified example illustrates how to use ogscript.setXML.

In this example, the value of the variable oglml is XML content (a label named myLabel). The
setXML command populates the abs canvas named Destination with the value of the oglml
variable. The result simply displays the label name myLabel.
<abs>

 <abs id="my-abs" name="Destination" />

 var oglml '<label name="myLabel"/>',

 ogscript setXML ('my-abs', oglml);

</abs>

Example 2
This example displays a table with two rows of two columns. The first row contains a parameter named
TYPE LABEL TEXT: that allows the user to type in a white box. The second row contains a button
named setXML and a blank label. When the user clicks the setXML button, the associated task
populates the blank label with whatever text the user typed. The user can redefine the label contents as
many times as they want.

In this example, the replacement XML is specified in a variable named oglml that uses
params.getValue to retrieve the typed text from the parameter named Text for Label. The button
task uses ogscript.setXML to populate the label (id="my-abs") with the value of the variable
oglml.

<abs contexttype="opengear">

 <meta>

246 • ogScript Reference DashBoard CustomPanel Development Guide

 <params>

 <param access="1" maxlength="0" name="Text for Label" oid="txt"
type="STRING" value="Type Here!" widget="text"/>

 </params>

 </meta>

 <table height="100" left="5" top="9" width="400">

 <tr>

 <label colspan="1" fill="both" header="true" name="TYPE LABEL TEXT:"
rowspan="1" style="txt-align:center;" weightx="1.0" weighty="1.0"/>

 <param colspan="1" expand="true" fill="both" oid="txt" rowspan="1"
style="txt-align:center;" weightx="1.0" weighty="1.0"/>

 </tr>

 <tr>

 <button buttontype="push" colspan="1" fill="both" name="setXml"
rowspan="1" weightx="1.0" weighty="1.0">

 <task tasktype="ogscript">var oglml = '<label name="' +
params.getValue('txt',0) + '" style="txt-align:center;" anchor="center"
top="0" bottom="0" left="0" right="0" />'

ogscript.setXML('my-abs', oglml);</task>

 </button>

 <abs anchor="center" colspan="1" fill="both" id="my-abs" rowspan="2"
style="bdr:etched;" weightx="1.0" weighty="1.0"/>

 </tr>

 </table>

</abs>

Example 3
This example has a label with text (<abs id="0x4"> … </abs>). It also has a button associated with
a task that uses ogscript.setXML to replace the text by replacing the XML contents of the <abs>
element. In this example, the replacement XML is contained within the task definition.

Before the button is clicked:

After the button is clicked:

<abs>

<abs id="0x4">

<label height="59" id="0x2" left="61" name="This Text Will Be Replaced"
style="txt-align:center" top="40" width="238"/>

DashBoard CustomPanel Development Guide ogScript Reference • 247

</abs>

<button buttontype="push" height="40" id="0x3" left="59"
name="replaceText" top="121" width="240">

<task tasktype="ogscript">ogscript.setXML('0x4', '<label
height="59" id="0x2" left="61" name="This is the New Text" style="txt-
align:center" top="40" width="238"/>');

</task>

</button>

</abs>

toBottom
Displays the object below all others in the same container. Object display is layered. If objects overlap,
higher layers are drawn over lower layers.

Syntax
ogscript.toBottom(ID);

Parameters

Parameter Type Required Description
ID String Yes ID object to be sent to the bottom

Returns
N/A

Example
This example includes two labels occupying the same position. LabelOne is defined second in the code,
so it appears on top and is therefore visible. Button One runs a task that uses ogscript.toBottom to send
Label One to the bottom of the stack. This makes Label Two visible. Button Two sends Label Two to
the bottom.
<abs>

<label height="317" id="labelTwo" left="100" name="Label Two"
style="size:Biggest;bg#D92648;txt-align:center;" top="100" width="350"/>

<label height="317" id="labelOne" left="100" name="Label One"
style="size:Biggest;bg#selectbg;txt-align:center;" top="100" width="350"/>

<button buttontype="push" height="40" id="oneBottom" left="150" name="Button
One" style="bg#selectbg;txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toBottom('labelOne');

</task>

</button>

<button buttontype="push" height="40" id="twoBottomn" left="300" name="Button
Two" style="bg#D92648;txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toBottom('labelTwo');

</task>

</button>

</abs>

toTop
Displays the object above all others in the same container. Object display is layered. If objects overlap,
higher layers are drawn over lower layers.

248 • ogScript Reference DashBoard CustomPanel Development Guide

Syntax
ogscript.toTop(ID);

Parameters

Parameter Type Required Description
ID String Yes ID object to be sent to the top

Returns
N/A

Example
This example includes two labels occupying the same position. LabelTwo is defined second in the code,
so it appears on top and is therefore visible. Button One runs a task that uses ogscript.toTop to send
Label One to the top of the stack. This makes Label One visible. Button Two sends Label Two to the
top.
<abs>

<label height="317" id="labelOne" left="100" name="Label One"
style="size:Biggest;bg#selectbg;txt-align:center;" top="100" width="350"/>

<label height="317" id="labelTwo" left="100" name="Label Two"
style="size:Biggest;bg#D92648;txt-align:center;" top="100" width="350"/>

<button buttontype="push" height="40" id="oneTop" left="150" name="Button
One" style="bg#selectbg;txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toTop('labelOne');

</task>

</button>

<button buttontype="push" height="40" id="twoTop" left="300" name="Button
Two" style="bg#D92648;txt-align:center;" top="450" width="100">

<task tasktype="ogscript">ogscript.toTop('labelTwo');

</task>

</button>

</abs>

upload
Open the File Upload dialog with the specified file.

Syntax
ogscript.upload(Filename);

Parameters

Parameter Type Required Description
Filename String Yes Name of the file with which to open the

File Upload dialog box.

Returns
N/A

Example
Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference • 249

params Object
In ogScript, use the params object to access functions to interact with openGear Device parameters and
constraints. The params object is also used to manipulate parameters stored in the .grid file.

The params object is accessible when a CustomPanel is associated with an openGear device or XML
data file (.grid file). Scripts referencing a device must follow beneath the referenced device in the XML
hierarchy.

To call an openGear Device function, use:
params.function name (parameters);

For example:
var data = params.getValue (0x12, 0);

Some params functions return a ParamScriptable object named this, which contains several methods
that enable you to manipulate parameters. For more information, see ParamScriptable Object on page
268.

params Functions
The following table lists the functions of the params object. Detailed descriptions appear after the table.
If you are reading this document on-screen, click a function name in the table to view its description.

Function Parameters Returns Description
createCopy Source OID

Destination OID
ParamScriptable Creates a copy of the parameter. The

duplicate parameter is independent of
the base parameter. Changing the
value of one does not affect the other.

createIntChoiceConstraint [choices] N/A Creates an integer choice constraint
(which is a set of key/value pairs) for
use in toggle buttons, combo box, radio
buttons, etc. The choice constraint you
create here can be used to replace a
constraint for a parameter.

createLinkedCopy Source OID
Destination OID

ParamScriptable Creates a copy of the parameter that is
linked to the base parameter:
Changing the value of the base
parameter also changes the value of
the duplicate parameter.
Changing the value of the duplicate
parameter does not affect the value of
the base parameter.

createMultiSet String [OID]
Integer [Index]
Object [Value]

multiset object Replaces multiple parameter values all
at once.

createParam JSON
parameter
definition

N/A Creates a parameter based on a JSON
parameter definition.

createStringChoiceConstraint [choices] N/A Creates a string choice constraint
(which is a set of key/value pairs) for
use in toggle buttons, combo box, radio
buttons, etc. The choice constraint you
create here can be used to replace a
constraint for a parameter.

deleteParam OID of
parameter to
delete

N/A Deletes the specified parameter.

getAllValues String [OID] The entire array of
values within the

Retrieves the entire array of values
within the parameter.

250 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
parameter.

getConstraint String [OID] Constraint Get the constraint from the parameter
with the specified OID.

getDeviceStatus N/A Device status
information

Checks the status of a device and
returns an Integer value indicating that
status:
0 - good
1 - warning
2 - error
3 - unknown

getElementCount Integer [Context
ID] String [OID]
Integer [Index]

ParamScriptable Get the information about an element in
a parameter with the specified OID.

getIdentifiedConstraint String [ID] String Get the constraint with the specified ID.
If the ID is an external object URL, get
the constraint defined in the specified
external object.

getParam String [Context
ID]
String [OID]
Integer [Index]

ParamScriptable Gets information about an element in
the parameter with the specified Object
ID.

getParam (OID,
Index).remove

String or
Integer [OID]
Integer [Index]

N/A Removes a parameter element. If the
parameter is an array with more than
one element, the element at the index
location is removed.

getStream String [OID] Boolean Check whether streaming of parameter
values to XPression is enabled.

getValue String [OID]
Integer [Index]

String Get the value of a parameter with the
specified OID.
If the parameter is not an array
parameter, use an Index of 0. In most
cases, enter 0 as the Index.

getValueAsString String [OID]
Integer [Index]

String Get a string representation of an
element in a parameter with the
specified OID.

isDeviceOnline N/A Online status of the
device as Boolean

Queries a device to determine whether
it is online.

isDeviceReadOnly N/A Boolean Returns true if the RBAC user’s
permission set only allows for Read
permissions.
Returns false if the RBAC user’s
permission set allows for Read and
Write perissions.
If not connected to an RPM server, it
will automatically return false.

isPrivateParamContext N/A Boolean Returns true if local OGLML-based
parameters are operating disconnected
from the real device.

replaceConstraint String [OID]
String
[Constraint ID]

N/A Replace the constraint for the
parameter with the specified OID with
the constraint with the specified
constraint ID.

replaceViewConstraint String [view
OID] String
[constraint

N/A Replaces the constraint object of a
parameter view.

DashBoard CustomPanel Development Guide ogScript Reference • 251

Function Parameters Returns Description
object]

resetAllValues String
[parameter
OID]

N/A If the specified parameter is a copy of a
base parameter, this function resets the
parameter’s values to those of the base
parameter.

setAccess String [OID],
Integer
[Access]

N/A Set the access level of the parameter
with the provided OID.

setAllValues OID Object[]
Values

N/A For an array parameter, replaces the
current array with the new array.

setMenuState Integer [Static
Menu ID],
Integer [Menu
State]

N/A Set the menu state of the menu with the
specified static menu ID.

setPrivateParamContext Boolean [Value] N/A true — disconnect parameters defined
in the OGLML document from the
device.
false — re-connect parameters defined
in the OGLML document from the
device.

setStream String [OID]
Boolean
[true/false]

N/A Controls whether the parameter
streams its values to XPression when
XPression streaming is on.
When true, streaming is ON. When
false, streaming is OFF.

setValue String [OID],
Integer [Index],
Object [Value]

N/A Set the value of an element in a
parameter with the provided OID to the
provided value.

setValueRelative String [OID],
Integer [index],
Integer [change
in value]

N/A Changes the value of a parameter.
If the value is a string, it is replaced. If it
is a float or int, the specified value is
added to the current value.

 String Subscribes to a device with
subscriptions support.

 String Unsubscribes to a device with
subscriptions support.

toOid String (OID) N/A Creates an OID object.

createCopy
Creates a copy of the parameter. The duplicate parameter is independent of the base parameter.
Changing the value of one does not affect the other.

Syntax
params.createCopy(Source OID, Destination OID);

Parameters

Parameter Type Required Description
Source OID String Yes The OID of the parameter to copy
Destination OID String Yes The OID of the new parameter.

Returns
Returns ParamScriptable. For more information, see ParamScriptable Object on page 268.

252 • ogScript Reference DashBoard CustomPanel Development Guide

Example
Coming soon.

createIntChoiceConstraint
Syntax
params.createIntChoiceConstraint(Choices);

Parameters

Parameter Type Required Description

Choices String Yes Name of the array variable that contains the
choices.

Returns
N/A

Example
Coming soon.

createLinkedCopy

Creates a copy of the parameter that is linked to the base parameter:
• Changing the value of the base parameter also changes the value of the duplicate parameter.
• Changing the value of the duplicate parameter does not affect the value of the base parameter.

Syntax
params.createLinkedCopy(Source OID, Destination OID);

Parameters

Parameter Type Required Description
Source OID String Yes The OID of the parameter to copy

Destination OID String Yes The OID of the new parameter.

Returns
Returns ParamScriptable. For more information, see ParamScriptable Object on page 268.

Example
Coming soon.

createMultiSet
Changes the values of multiple parameters at once. This function will return a multiSetScriptable
Object.

Syntax
params.createMultiSet(OID, Index, Value);

Parameters

DashBoard CustomPanel Development Guide ogScript Reference • 253

Parameter Type Required Description
OID String Yes Object ID of object of interest.

Index Integer Yes Array parameter index. If the parameter is
not an array parameter, use an Index of 0.
In most cases, enter 0 as the Index.

Value Object Yes New value for the OID.

Returns
multiSetScriptable Object

Example
In the following example, four parameters named "Value 1" through "Value 4" are created with text
values that are displayed on buttons when the example is run. When the user taps the Multi-Set button,
the params.createMultiSet function changes the parameter values to those referenced by the function.
<abs contexttype="opengear" gridsize="20" style="">

<meta>

<params>

<param access="1" maxlength="0" name="Value 1" oid="Value_1"
stateless="true" type="STRING" value="Original Value 1"
widget="100"/>

<param access="1" maxlength="0" name="Value 2" oid="Value_2"
stateless="true" type="STRING" value="Original Value 2"
widget="100"/>

<param access="1" maxlength="0" name="Value 3" oid="Value_3"
stateless="true" type="STRING" value="Original Value 3"
widget="100"/>

<param access="1" maxlength="0" name="Value 4" oid="Value_4"
stateless="true" type="STRING" value="Original Value 4"
widget="100"/>

</params>

</meta>

<param expand="true" height="40" left="20" oid="Value_1" top="20"
width="340"/>

<param expand="true" height="40" left="20" oid="Value_2" top="80"
width="340"/>

<param expand="true" height="40" left="20" oid="Value_3" top="140"
width="340"/>

<param expand="true" height="40" left="20" oid="Value_4" top="200"
width="340"/>

<button buttontype="push" height="60" left="20" name="Multi-Set" top="260"
width="340">

<task tasktype="ogscript">

var multi = params.createMultiSet(); multi.setValue('Value_1', 0,
'Multi-set 1');

multi.setValue('Value_2', 0, 'Multi-set 2');

multi.setValue('Value_3', 0, 'Multi-set 3');

multi.setValue('Value_4', 0, 'Multi-set 4'); multi.execute();

</task>

</button>

</abs>

254 • ogScript Reference DashBoard CustomPanel Development Guide

createParam
Creates a parameter based on a JSON parameter definition.

Syntax
params.createParam(JSON parameter definition);

Parameters

Parameter Type Required Description
JSON parameter
definition

String Yes JSON definition of the parameter.

Returns
N/A

Example
Coming soon.

createStringChoiceConstraint
Syntax
params.createStringChoiceConstraint(Choices);

Parameters

Parameter Type Required Description

Choices String Yes Name of the array variable that contains the
choices.

Returns
N/A

Example
Coming soon.

DashBoard CustomPanel Development Guide ogScript Reference • 255

deleteParam
Deletes the specified parameter.

Syntax
params.deleteParam(OID);

Parameters

Parameter Type Required Description
OID String Yes OID of parameter to delete

Returns
N/A

Example
Coming soon.

getAllValues
Retrieves the entire array of values from a parameter.

Syntax
params.getAllValues(OID);

Parameters

Parameter Type Required Description
OID String Yes The OID of the parameter

Returns
The entire array of values from the parameter.

Example
Coming soon.

getConstraint
Get the constraint from the parameter with the specified Object ID.

Syntax
params.getConstraint (OID);

Parameters

Parameter Type Required Description
OID String Yes Object ID of the object of interest.

Returns
Constraint

Example
Coming soon.

256 • ogScript Reference DashBoard CustomPanel Development Guide

getDeviceStatus
Checks the status of a device and returns an Integer value indicating that status.

Syntax
params.getDeviceStatus(OID);

Parameters

Parameter Type Required Description
OID String Yes OID of the device to be queried.

Returns
Device status, as an Integer:

• 0 — good
• 1 — warning
• 2 — error
• 3 — unknown

Example
Coming soon.

getElementCount
Gets the number of elements in a parameter array.

Syntax
params.getElementCount(OID);

Parameters

Parameter Type Required Description
OID String Yes The OID of the parameter.

Returns
The number of elements in the parameter array, as an Integer.

Example
Coming soon.

getIdentifiedConstraint
Get the constraint with the specified ID. If the ID is an external object URL, get the constraint defined
in the specified external object.

Syntax
params.getIdentifiedConstraint(ID);

Parameters

Parameter Type Required Description
ID String Yes ID of the constraint of interest.

DashBoard CustomPanel Development Guide ogScript Reference • 257

Returns
String

Example
Coming soon.

getParam
Gets information about an element in the parameter with the specified Object ID.

Syntax
params.getParam(Context ID, OID, Index);

Parameters

Parameter Type Required Description
Context ID String No The context ID of the component that contains

the parameter of interest.

OID String Yes Object ID of the object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Returns
ParamScriptable

Example
Coming soon.

getParam(OID, Index).remove
Removes a parameter element. If the parameter is an array with more than one element, the element at
the index location is removed.

Syntax
params.getParam([oid], [index]).remove();

Parameters

Parameter Type Required Description
OID String or

Integer
Yes OID can be a string or an integer, depending

on how the parameter is defined.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0.

Returns
N/A

Example
Coming soon.

258 • ogScript Reference DashBoard CustomPanel Development Guide

getStream
Checks whether streaming of parameter values to XPression is enabled for the parameter.

Syntax
params.getStream(OID);

Parameters

Parameter Type Required Description
OID String Yes OID of the parameter

Returns
Boolean, to indicate whether streaming is enabled.

Example
Coming soon.

getValue
Gets the value of a parameter with the specified Object ID.

Syntax
params.getValue(OID, Index);

Parameters

Parameter Type Required Description
OID String Yes Object ID of object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Returns
String

Example
var data = params.getValue (0x12,0);

getValueAsString
Gets a string representation of an element in a parameter with the specified Object ID.

Syntax
params.getValueAsString(OID, Index);

DashBoard CustomPanel Development Guide ogScript Reference • 259

Parameters

Parameter Type Required Description
OID String Yes Object ID of the object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Returns
String

Example
Coming soon.

isDeviceOnline
Queries a device to determine whether it is online.

Syntax
params.isDeviceOnline(OID);

Parameters

Parameter Type Required Description
OID String Yes OID of device to query.

Returns
Online status of the device.

Example
Coming soon.

isDeviceReadOnly
Returns true if the RBAC user’s permission set only allows for Read permissions.

Returns false if the RBAC user’s permission set allows for Read and Write perissions.

If not connected to an RPM server, it will automatically return false.

Syntax
params.isDeviceReadOnly();

Parameters

N/A

Returns
Boolean.

Example
Coming soon.

260 • ogScript Reference DashBoard CustomPanel Development Guide

isPrivateParamContext
Returns true when the local OGLML-based parameters are operating disconnected from a real device.
Changes and values are not sent to or fetched from the device if the parameter is defined in the OGLML
document.

Syntax
params.isPrivateParamContext();

Parameters
N/A

Returns
Boolean.

Example
Coming soon.

replaceConstraint
Replace the constraint for the parameter with the specified Object ID with the constraint with the
specified constraint ID. If the ID is an external object URL, replace the constraint with the constraint
specified by the external object.

Syntax
params.replaceConstraint(OID, Constraint ID);

Parameters

Parameter Type Required Description
OID String Yes Object ID of object of interest.

Constraint ID String Yes ID of the constraint with which to replace the
constraint for the parameter with the specified
Object ID.

Returns
N/A

Example
Coming soon.

replaceViewConstraint
Replaces the constraint object of a parameter view.

Syntax
params.replaceViewConstraint(view OID, constraint object);

Parameters

Parameter Type Required Description
view OID String Yes OID of the view.

constraint object String Yes constraint object to use.

DashBoard CustomPanel Development Guide ogScript Reference • 261

Returns
N/A

Example
Coming soon.

resetAllValues
If the specified parameter is a copy of a base parameter, this function resets the parameter’s values to
those of the base parameter.

Syntax
params.resetAllValues(parameter OID);

Parameters

Parameter Type Required Description
parameter OID String Yes The OID of the parameter.

Returns
N/A

Example
Coming soon.

setAccess
Set the access level of the parameter with the specified Object ID.

Syntax
params.setAccess(OID, Access);

Parameters

Parameter Type Required Description
OID String Yes Object ID of object of interest.

Access Integer Yes Access level to set for the specified OID. The
available access levels are as follows:
0 — Read Only
1 — Read and Write

Returns
N/A

Example
Coming soon.

setAllValues
For an array parameter, replaces the current array with a new array.

Syntax

262 • ogScript Reference DashBoard CustomPanel Development Guide

params.setAllValues([oid], [array]);

Parameters

Parameter Type Required Description
OID String Yes The OID of the parameter.

Array String Yes The new array.

Returns
N/A

Example
Coming soon.

setMenuState
Set the menu state of the menu with the provided static menu ID.

Syntax
params.setMenuState(Static Menu ID, Menu State);

Parameters

Parameter Type Required Description
Static Menu ID Integer Yes ID of the menu of interest.

Menu State Integer Yes Menu state to set for the specified Static Menu
ID. The available menu states are as follows:
0 — Hidden
1 — Disabled
2 — Normal

Returns
N/A

Example
Coming soon.

setPrivateParamContext
Control the context between the parameters defined in the OGLM document and a device. This function
has no impact on parameters that are only defined on the device or only defined in the OGLML
document.

Syntax
params.setPrivateParamContext(Value);

Parameters

Parameter Type Required Description

DashBoard CustomPanel Development Guide ogScript Reference • 263

Value Boolean Yes The available contexts are as follows:
true — disconnect parameters defined in the
OGLML document from the device.
false — re-connect parameters defined in the
OGLML document from the device.

Returns
N/A

Example
Coming soon.

264 • ogScript Reference DashBoard CustomPanel Development Guide

setStream
Controls whether a parameter streams its values to XPression when XPression streaming is on.

Syntax
params.getStream(OID, true/false);

Parameters

Parameter Type Required Description
OID String Yes OID of the parameter

true/false Boolean Yes When true, streaming is ON. When false,
streaming is OFF.

Returns
N/A

Example
Coming soon.

setValue
Set the value of a parameter for the provided Object ID.

Syntax
params.setValue(OID, Index, Value);

Parameters

Parameter Type Required Description
OID String Yes Object ID of object of interest.

Index Integer Yes Array parameter index. If the parameter is not
an array parameter, use an Index of 0. In most
cases, enter 0 as the Index.

Value Object Yes New value for the OID.

Returns
N/A

Example 1
// Set the parameter to 3:

params.setValue (0x12,0,3);

Example2
// Set the value to 3 greater than it was.

var data = params.getValue(0x12,0); params.setValue(0x12,0,data + 3);

Example3
// Set the value of Param_A to match the value of Param_B

params.setValue('Param_A', 0, params.getValue('Param_B', 0));

DashBoard CustomPanel Development Guide ogScript Reference • 265

setValueRelative
Increments or decrements a numeric value by a specified amount.

Syntax
params.setValueRelative(OID, Index, Change in value);

Parameters

Parameter Type Required Description
OID String or

Integer
Yes The OID of the object of which you want to

change the value.

Index Integer Yes Position of data in the parameter.

Change in
Value

Integer Yes Amount by which the value is incremented. To
decrement the value, use a negative integer.

Returns
N/A

Example
Coming soon.

subscribe
You can use the subscribe or unsubscribe command templates or code syntax below to add the
subscription list to a DashBoard device panel. You must add support to subscribe and/or unsubscribe
from parameter updates in the device panel’s OGLML structure. You can also use the command
template that is provided in the DashBoard PanelBuilder Script Palette under params.

Syntax
var subList = new Array();

 subList.push("oid1");

 subList.push("oid2");

var subscriptionOwnerObject = params.subscribe(subList, callback);

Parameters Type Required Description

266 • ogScript Reference DashBoard CustomPanel Development Guide

subList,
callback

[Array of
strings,
callback]

*Required to
support devices
with support for
subscriptions.

Subscribes to parameters with the provided
OIDs. To support subscriptions, the subscribe
function is required to subscribe to parameter
updates in the device panel's OGLML
structure. You can also use the DashBoard
PanelBuilder Script Palette to add the

subscribe or unsubscribe functions using the
template.

Returns
Returns subscriptionOwnerObject for later use to unsubscribe.

"params.subscribe" Example
 <task tasktype="ogscript">

 var subList= new Array();

 subList.push("deviceoptions.speakerlevel");

 subList.push("db.touch.version.*");

 var subscriptionOwnerObject = params.subscribe(subList, callback);

 ogscript.putObject('my-subscription-owner-object',
subscriptionOwnerObject);

</task>

Explanation
In this example, the ogscript.putObject is used to retain the result of the params.subscribe
function, which is later used to unsubscribe.

unsubscribe
You can use the subscribe or unsubscribe command templates or code syntax below to add the
subscription list to a DashBoard device panel. You must add support to subscribe and/or unsubscribe
from parameter updates in the device panel’s OGLML structure. You can also use the template that is
provided in the DashBoard PanelBuilder Script Palette.

Syntax

DashBoard CustomPanel Development Guide ogScript Reference • 267

params.unsubscribe(subscriptionOwnerObject);

Function Type Returns Description
unsubscribe [subscriptionOw

nerObject]
N/A Unsubscribes from the OIDs provided by the

subscriptionOwnerObject.

"params.subscribe" Example
<task tasktype="ogscript">

 var subscriptionOwnerObject = ogscript.getObject('my-subscription-
owner-object');

 params.unsubscribe(subscriptionOwnerObject);

</task>

Explanation
In the subscribe example above, the ogscript.putObject is used to retain the result of the
params.subscribe function and ogscript.getObject fetches it when we want to unsubscribe
(params.unsubscribe). You can see that the subscribe response object is used to unsubscribe.

Now that you have successfully implemented subscriptions support, make sure that you leverage the
built-in automations within DashBoard to support subscriptions.

toOid
Creates an OID object.

Syntax
params.toOid(OID);

Parameters

Parameter Type Required Description
OID String Yes The value of the new OID object.

Returns
N/A

Example
This example is a function that uses the toOid function to create an OID with the value

'my.special.oid', then uses the getOid function to return the OID value.
function lookForSpecificOid(myParam)

{

var myOID = params.toOid('my.special.oid'); return myParam.getOid() == myOID;

}

268 • ogScript Reference DashBoard CustomPanel Development Guide

ParamScriptable Object
Some params functions return a ParamScriptable object named this, which contains several methods
that enable you to manipulate parameters.

In ogScript, use methods of the this object to manipulate parameters. To call a general-purpose
function, use:
this.method name(parameters);

For example:
this.replaceConstraint ("0.0;100.0;0.0;100.0;1");

The following table lists the methods of the ParamScriptable object.

Method Parameters Returns Description
deleteParam N/A N/A Deletes the parameter
getConstraint N/A Returns the parameter constraint Gets the parameter constraint
getAllValues N/A The entire array of values within

the parameter.
Retrieves the entire array of
values within the parameter.

getElementCount N/A The number of elements in the
parameter array, as an Integer.

Gets the number of elements in
the parameter array.

getIndex N/A Returns the array index of the
current element

Gets the array index of the
current element

getOid N/A Returns the OID of the changed
parameter

Gets the OID of the changed
parameter

getValue N/A Returns the value of the changed
element

Gets the value of the changed
element

getValueAsString N/A Returns a string representation of
the changed value

Gets a string representation of
the changed value

getValueAt Integer [index] Returns a string representation of
the value at the provided index

Gets a string representation of
the value at the provided index

getValueAtAsString Integer [index] Returns a string representation of
the value at the provided index

Gets a string representation of
the value at the provided index

setValue String [value] N/A Sets the value of the changed
element to the provided value.

getName N/A Returns the parameter name Gets the parameter name
replaceConstraint String

[Constraint]
N/A Replaces the parameter's

constraint to the provided value
remove N/A N/A Removes the current array

element
isArrayParameter N/A Returns true if the parameter is

an array element
Checks whether the parameter
is an array element

resetAllValues N/A N/A If the parameter is a copy of a
base parameter, this function
resets the parameter’s values
to those of the base parameter.

setValueAt Integer [index]
String [value]

N/A Sets the value of element at
the provided index to the
provided value.

getElementCount N/A Returns the number of elements
in the array

Gets the number of elements in
the array

DashBoard CustomPanel Development Guide ogScript Reference • 269

rosstalk Object
In ogScript, use the rosstalk object to communicate over the network to other devices that speak
RossTalk protocol. Functions in the rosstalk object are typically set through a user interface.

Also see, rosstalkex Object.

To call a general-purpose function, use:
rosstalk.function name(parameters);

For example:
rosstalk.setHost(Server01);

The following table lists the functions of the rosstalk object.

Function Parameters Returns Description
setHost String [Host] N/A Set a default host to use for

RossTalk commands where no
host has been defined.

getHost N/A String Get the default host previously
defined.

setPort Integer [Port] N/A Set a default port to use for
RossTalk commands where no
host has been defined.

getPort N/A Integer Get the default port previously
defined.

sendAsBytes String [Host], Int [Port],
String [Bytes as Hex String]

N/A Equivalent of calling:
sendAsBytes(host, port, bytes,
null);

sendAsBytes String [Host], Int [Port],
String [Bytes as Hex String],
Function [Callback]

N/A Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9…") and
send them to the provided host
at the provided port. Invoke the
callback function when done.

sendAsBytesToGroup String [Group], String [Host],
Int [Port],
String [Bytes as Hex String],
Function [Callback]

N/A Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9…") and
send them to the provided host
at the provided port. Invoke the
callback function when done.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

sendAsBytesWithResponse String [Host], Int [Port],
String [Bytes as Hex String],
String [responseBytes],
Function [Callback]

Response
message
provided by
the recipient.

Convert bytes from string
(where string is formatted as
ASCII representations of bytes
e.g. "FDDFEAAE12F9…") and
send them to the provided host
at the provided port. Invoke the
callback function when done.
The [responseBytes] string,
when received from the
recipient, indicates the end of
the response message.

270 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
sendAsBytesWithResponseToGroup String [Group], String [Host],

Int [Port], String [Bytes as
Hex String], String
[responseBytes] Function
[Callback]

Response
message
provided by
the recipient.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.
The [responseBytes] string,
when received from the
recipient, indicates the end of
the response message.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

sendBytes String [Host], Int [Port],
byte[] [Data to Send],
Function [Callback]

N/A Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.

sendBytesToGroup String [Group], String [Host],
Int [Port], byte[] [Data to
Send], Function [Callback]

N/A Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

sendBytesWithResponse String [Host], Int [Port],
byte[] [Data to Send], Byte
[responseTerminator]
Function [Callback]

Response
message
provided by
the recipient.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.
The [responseTerminator] byte,
when received from the
recipient, indicates the end of
the response message.

sendBytesWithResponseToGroup String [Group], String [Host],
Int [Port], byte[] [Data to
Send], Byte
[responseTerminator]
Function [Callback]

Response
message
provided by
the recipient.

Send the provided bytes to the
provided host at the provided
port. Invoke the callback
function when done.
The [responseTerminator] byte,
when received from the
recipient, indicates the end of
the response message.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

sendMessage String [RossTalk Command] N/A Equivalent of calling:
sendMessage (getHost(),
getPort(), RossTalk Command,
null);

sendMessage String [RossTalk Command],
Function [Callback]

N/A Equivalent of calling:
sendMessage (getHost(),
getPort(), RossTalk Command,
Callback);

sendMessage String [Host], Int [Port],
String [RossTalk Command]

N/A Equivalent of calling:
sendMessage (Host, Port,
RossTalk Command, null);

sendMessage String [Host], Int [Port],
String [RossTalk Command]
Function [Callback]

N/A Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.

DashBoard CustomPanel Development Guide ogScript Reference • 271

Function Parameters Returns Description
sendMessageToGroup String [Group], String [Host],

Int [Port], String [RossTalk
Command] Function
[Callback]

N/A Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

sendMessageWithResponse String [Host], Int [Port],
String [RossTalk Command],
String [responseTerminator],
Function [Callback]

Response
message
provided by
the recipient.

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.
The [responseTerminator]
string, when received from the
recipient, indicates the end of
the response message.

sendMessageWithResponseToGroup String [Group], String [Host],
Int [Port], String [RossTalk
Command], String
[responseTerminator],
Function [Callback]

Response
message
provided by
the recipient.

Send the provided string as
UTF-8 followed by CRLF bytes
to the provided host at the
provided port. Invoke the
callback function when done.
The [responseTerminator]
string, when received from the
recipient, indicates the end of
the response message.
The [group] string specifies the
group/thread that the rosstalk
command will be sent from.

272 • ogScript Reference DashBoard CustomPanel Development Guide

rosstalkex Object
In ogScript, you can use the rosstalkex object to communicate over the network to other devices that
speak RossTalkEx protocol. You can use RossTalk Ex commands to trigger specific events, or to send
generic RossTalkEx commands. You can also send RossTalk commands through RossTalkEx, but you
cannot do the reverse.

DashBoard sends RossTalkEx commands to XPression using an authenticated RossTalkEx connection.
This differs from the method that other RossTalk commands use, which is an open TCP protocol.

To call a general-purpose function, use:
rosstalkex.function name(parameters);

For example:
rosstalkex.sendMessage("10.3.2.1", 8020, "DATALINQKEY 101:k1:v1", null);

The following table lists the functions of the rosstalkex object.

Function Parameters Returns Description
getConnection String [Host], Integer [Port],

Boolean [Creation Flag]
If the handshake is
successful, the
connection object
is returned. If the
handshake is not
successful, a null
value is returned.

This is an optional command that
users can use to open and
authenticate a connection to an
XPression. An authentication
request will be sent.
Once a connection is opened, it will
remain open for the life of the panel
(assuming it is not explicitly closed
by either end).
If users use FALSE as the creation
flag, then the getConnection function
will simply return the existing
connection if it was previously
opened, or null if it was not.
The creation flag command is
optional, because when the
sendMessage or
sendMessageWithResponse
commands are executed in a panel,
if the connection with the host is not
open, then the getConnection
function is first executed
automatically.
Once a connection is established,
the message is sent using the XML
API wrapper.

sendMessage String [Host], Integer [Port],
String [Message], Function
[Callback]

If the
authentication is
not successful, no
message is sent
and an error
message is thrown,
otherwise, nothing
is returned.

This command calls getConnection
to initiate an authenticated
connection.
Once the connection is open,
subsequent calls will not
automatically trigger the
getConnection function.

DashBoard CustomPanel Development Guide ogScript Reference • 273

robot Object
In ogScript, use the robot object to communicate with CamBot robotic cameras through the CamBot PC
User Interface. Functions in the robot object are typically set through a user interface.

To call a general-purpose function, use:
robot.function name(parameters);

For example:
robot.setHost(Server01);

The following table lists the functions of the robot object.

Function Parameters Returns Description
setHost String [Host] N/A Set a default host to use for

CamBot commands where no
host has been defined.

getHost N/A String Get the default host
previously defined.

setPort Integer [Port] N/A Set a default port to use for
CamBot commands where no
host has been defined.

getPort N/A Integer Get the default port previously
defined.

sendCambot String [CamBot
Command]

N/A Equivalent of calling:
sendCambot (getHost(),
getPort(), command, null)

sendCambot String [CamBot
Command] Function
[Callback]

N/A Equivalent of calling:
sendCambot (getHost(),
getPort(), CamBot Command,
Callback);

sendCambot String [Host], Int [Port],
String [CamBot
Command]

N/A Equivalent of calling:
sendCambot (Host, Port,
CamBot Command, null);

sendCambot String [Host], Int [Port],
String [CamBot
Command] Function
[Callback]

N/A Send the provided CamBot
command to the provided host
at the provided port. Invoke
the callback function when
done.
Callback function signature:
Function (Boolean success,
String sentData, String
receivedData, Exception
javaException)

vdcp Object
In ogScript, use the vdcp object to communicate with BlackStorm video servers. Functions in the vdcp
object are typically set through a user interface.

To call a general-purpose function, use:
vdcp.function name(parameters);

For example:
vdcp.setHost(Server01);

The following table lists the functions of the vdcp object.

274 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
setHost String [Host] N/A Set a default host to use for VDCP

commands where no host has been
defined.

getHost N/A String Get the default host previously
defined.

setPort Integer [Port] N/A Set a default port to use for VDCP
commands where no host has been
defined.

getPort N/A Integer Get the default port previously
defined.

activeClip String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A Fetch the active clip ID for the
provided channel from the server at
the provided host/port. Invoke the
callback with the active clip ID when
done.
Callback function signature:
Function (Boolean success, String
sentCommand, String resultString,
Exception javaException)

clipDuration String [Host], Int [Port], Int [Channel],
String [ClipID], Function [Callback]

N/A Fetch the duration [HH:MM:SS:FF]
of the clip with the given ID. Invoke
the callback with the clip duration
when done.
Callback function signature:
Function (Boolean success, String
sentCommand, String resultString,
Exception javaException)

continuePlay String [Host], Int [Port], Int [Channel] N/A Sends the vdcp continuePlay
command.

cueClip String [Host], Int [Port], Int [Channel] N/A
cueClip String [Host], Int [Port], Int [Channel],

Function [Callback]
N/A

fastForward String [Host], Int [Port], Int [Channel] N/A

fastForward String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A

listClips String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A

pause String [Host], Int [Port], Int [Channel] N/A

pause String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A

play String [Host], Int [Port], Int [Channel] N/A Sends the vdcp variPlay command.

rewind String [Host], Int [Port], Int [Channel] N/A

rewind String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A

stop String [Host], Int [Port], Int [Channel] N/A

stop String [Host], Int [Port], Int [Channel],
Function [Callback]

N/A

nkScript Object
In ogScript, use the nkScript object to control NK Router OGLML tags used in Switchboard virtual

DashBoard CustomPanel Development Guide ogScript Reference • 275

control panels. Functions in the nkScript object are usually set through a user interface.

The nkScript global object is only accessible in OGLML contexts that are declared as having a NK
Router context type or are beneath such a context in the OGML document hierarchy.

To call a general-purpose function, use:
nkscript.function name(parameters);

For example:
nkscript.setHost(Server01);

The following table lists the functions of the nkscript object.

Function Parameters Returns Description
convertCommaSeperat
edLevelsToMask

String [Levels], Boolean
[SearchTags]

Long Levelmask Allows conversion of a list of
levels to the appropriate level
mask. Level mask is a bit field
where you can have up to 32
levels set 'on' at a time.
SearchTags should always be
'true'.

doSwitch N/A Boolean

Equivalent of calling:
doSwitch(getActiveDst(),
getActiveSrc(),
getLevelMask());

doSwitch Int [Dst],
Int [Src], Long [Levels]

Boolean

Do a switch on the active IPS
to route the given destination
to the given source on the
given levels.

doSwitchWithLabels String [Destination],
String [Source], String
[Levels]

Boolean Allows you to switch between
levels by name.

getActiveDst N/A Int Get the active destination
number
(0-indexed). Returns -1 if
there is no active destination.

getActiveDstName N/A String Get the name of the active
destination (from the
switchboard configuration).
Returns null if there is no
active destination.

getActiveIPS N/A String Get the serial number of the
active IPS.

getActiveIPSName N/A String Get the name of the active
IPS.

getActiveSrc N/A Int Get the active source number
(0-indexed). Returns -1 if
there is no active source.

getActiveSrcName N/A String Get the name of the active src
(from the switchboard
configuration).
Returns null if there is no
active source.

getActiveSystem N/A NKSystem Get the currently active
NKSystem.

getDstName String [Source] String Get the destination name of
the given source.

getLevelMask N/A Long Get the current level mask (as
a bit field)
Level mask is a bit field where

276 • ogScript Reference DashBoard CustomPanel Development Guide

Function Parameters Returns Description
you can have up to 32 levels
set 'on' at a time.

getLevelName String [Source] String Get the level name of the
given source.

getProtectStatus
String [Destination],
String [Levels]

Boolean Get the protect status of the
destination level.

getSrcName String [Source] String Get the source name.

getStatus
String [Destination],
String [Level]

Int Get the status of the given
destination level.

isLevelActive Int [Level Num] Boolean Is the current level active.
Equivalent to asking:
levelMask & (1 << levelNum)
!= 0;

isMCFlag N/A Boolean Is the Machine Control flag
set.

isProtected N/A Boolean Verifies whether the active
destination is protected or not.

isProtected Int [Destination], Long
[Levels]

Boolean Verifies whether the given
destination is protected; or
not.

isProtectedByMe N/A Boolean Is the active destination
protected by this virtual panel.

isSrcActive Int [Src] Boolean Verifies whether the given
source is active on the active
destination of all levels.

isSrcActive Int [Dst],
Int [Src], Long [Levels]

Boolean Verifies whether the provided
source is active on the
specified destination and level
mask.

isVirtual N/A Boolean Verifies whether virtual routing
is in use (for switch
commands and status
requests).

setActiveDst Int [Dst] N/A Set the active destination (0-
indexed).

setActiveIPS String [Serial] Boolean

Set the IPS with the given
serial number as the active
IPS to receive commands and
send status.
Deactivate any currently
active IPS.

setActiveSrc Int [Src] N/A Set the active source (0-
indexed).

setLevelActive Int [Level Num], Boolean
[Active]

Boolean Set the given level as active.

setLevelMask Long [Level Mask] N/A Set the complete level mask
bitfield.

setMCFlag Boolean Boolean

Set the Machine Control flag
to true or false.

setProtected Boolean Boolean

Request the router to protect
the active destination.

setVirtual Boolean Boolean

Set virtual routing on/off for
switch commands and status
requests.

DashBoard CustomPanel Development Guide ogScript Reference • 277

Function Parameters Returns Description
verifyConfiguration N/A Boolean

Re-activate the current IPS.

webcam Object
In ogScript, use the webcam object to manage webcam widgets within a CustomPanel.

To call a general-purpose function, use:
webcam.function name (parameters);

For example:
webcam.getWebcamResolution(“CamPro1”)

The following table lists the functions of the webcam object.

Function Parameters Returns Description
getWebcamResolution String [webcamName] String Get the resolution of the

webcam.
e.g. “1920x1080”

getAvailableWebcams N/A String Get available webcams.
getActiveWebcam String [widgetId] String Get the current webcam name

rendered by a specific
webcam widget id.

getWebcamResolutions String [webcamName] String Get a list of available webcam
resolutions.
Note that the library may not
detect all supported webcam
resolutions. If a selected
resolution it is not found, then
the best supported resolution
detected by the library will be
set.

getHighestSupportedR
esolution

String [webcamName] String Get the highest supported
resolution for the webcam.

getWebcamFillModes N/A String Get a list of supported widget
fill modes for the entire
application.

setWebcamResolution String[widgetId], String
[webcamName]

N/A Set the resolution for the
webcam. If a resolution that is
believed to be supported by
your webcam is not listed, you
can set it manually.

isWebcamInRegistry String [webcamName] Boolean Verifies whether the webcam
is available and detected by
the application.

setWebcamSource String [wigetId], String
[webcamName]

N/A Set the webcam source of a
specific widget.

closeWebcamSource String [webcamName] N/A Close a specific webcam.
setWebcamFillMode String [widgetId], String

[webcamName]
N/A Set the fill mode of a specific

widget.

278 • ogScript Reference DashBoard CustomPanel Development Guide

NDI Object
In ogScript, use the NDI object to manage NDI and NDI widgets within a CustomPanel.

To call a general-purpose function, use:
ndi.function name (parameters);

For example:
ndi.getNDISourceNames ()

The following table lists the functions of the NDI object.

Function Parameters Returns Description
getNDISourceNames N/A String Get a list of available NDI

source names.
getNDISources N/A String Get a list of NDI sources as

objects.
getDestination String [name] String Get the NDI destination as an

object.
closeDestination String [name] N/A Close an NDI destination.
closeDestination String [name], String

[group]
N/A Close an NDI destination

within a certain group.

RPM Object
In ogScript, use the RPM object to manage CustomPanels within RPM. Note that this function only
works in RPM. You can use the ogscript.getBuild() function to determine whether you are in
RPM or not. An example of this would be:

/*
 * RPM 3.11 and earlier return undefined, RPM 3.12 onwards will
return build info containing "RPM"
*/
function isRpm() {
 var build = ogscript.getBuild();
 return build === undefined || build.contains("RPM")
}

...
// The rpm object does not exist in DashBoard, only execute if
we're running in RPM
if (isRpm()) {
 rpm.logout();
}

To call a general-purpose function, use:
rpm.function name (parameters);

For example:
rpm.logout ()

The following table lists the functions of the RPM object.

Function Parameters Returns Description
logout Boolean N/A Logs the current user out of

the RPM server. If the
CustomPanel is public, this
call is ignored.

DashBoard CustomPanel Development Guide Widget Hint Definitions • 279

Appendices

In This Section
See appendices in the bookmark navigation.

Appendix A: Widget Hint Definitions

// widget hints for all parameter types
#define WIDGET_DEFAULT 0 // let DashBoard decide
#define WIDGET_TEXT_DISPLAY 1 // display as text, read only
#define WIDGET_HIDDEN 2 // do not display

// widget hints for numeric types with NULL_CONSTRAINT or RANGE_CONSTRAINT
#define WIDGET_SLIDER_HORIZONTAL 3 // slider (RANGE only)
#define WIDGET_SLIDER_VERTICAL 4 // slider (RANGE only)
#define WIDGET_SPINNER 5 // spinner
#define WIDGET_TEXTBOX 6 // numeric entry field
#define WIDGET_PROGRESS_BAR 17 // progress bar (RANGE only)

#define WIDGET_AUDIO_METER 19 // audio meter (RANGE only)

#define WIDGET_MENU_POPUP 20 // popup menu with the ID(INT ONLY)

#define WIDGET_TIMER 21 // countdown/up timer (RANGE only)

#define WIDGET_SLIDER_H_NO_LABEL 24 // unlabeled slider (RANGE only)

#define WIDGET_SLIDER_V_NO_LABEL 25 // unlabeled slider (RANGE only)

#define WIDGET_VERTICAL_FADER 26 // vertical fader bar (RANGE only)

#define WIDGET_TOUCH_WHEEL 27 // touch wheel (RANGE only)

#define WIDGET_HEX_SPINNER 28 // base 16 spinner (RANGE only)

#define WIDGET_ABSOLUTE_POSITIONER 29 // absolute x,y positioner

#define WIDGET_CROSSHAIR 30 // joystick-like x,y positioner

#define WIDGET_JOY_STICK 34 // joystick x,y positioner

// widget hints for integer types with CHOICE_CONSTRAINT
#define WIDGET_COMBO_BOX 7 // combo box - usually the default
#define WIDGET_CHECKBOX 8 // two choices
#define WIDGET_RADIO_HORIZONTAL 9 // radio buttons
#define WIDGET_RADIO_VERTICAL 10 // radio buttons
#define WIDGET_BUTTON_PROMPT 11 // single choice
#define WIDGET_BUTTON_NO_PROMPT 12 // single choice
#define WIDGET_BUTTON_TOGGLE 13 // two choices

#define WIDGET_FILE_DOWNLOAD 18 // external object OID/filename pairs

#define WIDGET_RADIO_TOGGLE_BUTTONS 22 // display a toggle button for choices

#define WIDGET_TREE 31 // display a tree with choices

#define WIDGET_TREE_POPUP 32 // display a tree in a combo box

280 • Widget Hint Definitions DashBoard CustomPanel Development Guide

// widget hints for INT32_PARAM
#define WIDGET_IP_ADDRESS 14 // nnn.nnn.nnn.nnn

#define WIDGET_COLOR_CHOOSER 23 // argb color chooser

#define WIDGET_COLOR_CHOOSER_POPUP 33 // argb color chooser in popup

// widget hints for integer arrays
#define WIDGET_ARRAY_HEADER_VERTICAL 15 // array layout specification
#define WIDGET_ARRAY_HEADER_HORIZONTAL 16 // array layout specification

// widget hints for STRING_PARAM
#define WIDGET_TEXT_ENTRY 3 // normal text entry field
#define WIDGET_PASSWORD 4 // uses password entry field
#define WIDGET_TITLE_LINE 5 // layout hint - read only
#define WIDGET_LINE_ONLY 6 // layout hint - read only
#define WIDGET_TITLE_ONLY 7 // layout hint - read only
#define WIDGET_PAGE_TAB 8 // layout hint - read only
#define WIDGET_LICENSE 9 // RossKeys license adapter
#define WIDGET_TITLE_HEADER 10 // layout hint - read only
#define WIDGET_COMBO_ENTRY 11 // combo box plus entry field
#define WIDGET_ICON_DISPLAY 12 // icon plus text display
#define WIDGET_RICH_LABEL 13 // multi-line display (html format)

#define WIDGET_MULTILINE_TEXT_ENTRY 14 // multi-line text entry (non-html)

// widget hints for STRING_PARAM (used with special OID 255.1)
#define WIDGET_NAME_OVERRIDE_APPEND 0
#define WIDGET_NAME_OVERRIDE_REPLACE 1

// deprecated names - here for backward compatibility
#define WIDGET_NONE WIDGET_DEFAULT
#define WIDGET_COMBO WIDGET_COMBO_BOX
#define WIDGET_RADIO WIDGET_RADIO_HORIZONTAL
#define WIDGET_HSLIDER WIDGET_SLIDER_HORIZONTAL
#define WIDGET_VSLIDER WIDGET_SLIDER_VERTICAL

DashBoard CustomPanel Development Guide Reserved Object IDs • 281

Appendix B: Reserved Object IDs

Reserved OIDs
Parameter OIDs in the set 0xFF00 to 0xFFFF are reserved for future protocol messages. Apart from
these, there are several other OIDs that have special significance in DashBoard.

Name OID Type Constra

int
Function

SUPPLIER_NAME* 0x0102 String N/A Name of the card manufacturer or OEM
supplier (i.e. who customer should call for
support). Reported as a generic card
parameter by SNMP.

PRODUCT_NAME** 0x0105 String
(32-
bytes
max)

N/A The product name used to identify the
card in DashBoard. This name should not
change. For display purposes, an
alternate name can be provided via OID
0xFF01.
Reported as a generic card parameter by
SNMP.

SERIAL_NUMBER 0x0106 String N/A Unique serial number.
SOFTWARE_REV*+ 0x010B String

(20-
bytes
max)

N/A This value is used by a card to report
information about its software load. The
value should be meaningful to the people
supporting the card.
Reported as a generic card parameter by
SNMP.

FPGA_REV+ 0x010C String N/A This value is used by DashBoard
compare software versions when
uploading the Main Board FPGA Type
(upload type 1).

OPTION_SOFTWARE_REV+ 0x010D String N/A This value is used by DashBoard
compare software versions when
uploading the Option Board Software
Type (upload type 2).

OPTION_FPGA_REV+ 0x010E String N/A This value is used by DashBoard
compare software versions when
uploading the Option Board FPGA Type
(upload type 3).

SMPTE_STATUS 0x0201 Int16 N/A Card status to be reported via frame fault
LEDs.
Value of 0 indicates no error.
Non-zero values indicate error state.

CURRENT_MILLIS 0x0205 Int16 N/A Current consumption in milliamps at 12 V.
This may be used by the fan controller to
adjust fan speed for high-current cards.

EDIT_PERMISSION 0x0601 Int16 Choice

Tells DashBoard that the card is editable.
If this OID is used, parameters on the
card will be editable only if the parameter
value is 0. If the parameter value is non-
zero, the card will display as read-only.

FRAME_POWER_CAPABILITY 0xFE0F This OID is broadcast regularly to every
card in the frame. The value of the
parameter is the power available to each
slot a card occupies.
This value is calculated using the power

282 • Reserved Object IDs DashBoard CustomPanel Development Guide

Name OID Type Constra
int

Function

rating of the power supplies installed in
the frame (if the power supplies are
different, the lowest rating is used), minus
some overhead for the frame and frame
controller card, divided by the number of
slots in the frame.
[(Power supply rating - overhead) /
Number of slots in frame.]
A card may consume the power of
multiple slots, if the card occupies multiple
slots. For example, a card occupying two
slots may use two times the parameter
value.

NAME_OVERRIDE 0xFF01 String N/A With a widget hint of 0, the value in this
String will be appended to the device
name (0x0105) when displayed in the
DashBoard tree and tabs. With a widget
hint of 1, the value in this String will be
displayed instead of the value in 0x0105
in the DashBoard tree and tabs.

CONNECT_VERIFY 0xFF03 Mixed N/A This parameter is used for communicating
DashBoard’s connection handshake and
response.

UPLOAD_URL 0xFF02 String N/A Alternate file upload target. This
overrides the behavior of the DashBoard
upload button.
If this value is “disable”, DashBoard will
disable the upload button on the device
page.
If this value is a valid URL, DashBoard
will upload files to this location via HTTP
POST.

FRAME_ID 0xFF04 String N/A Reserved for use by an openGear frame’s
Network Interface Card. If this parameter
is provided, its value MUST match the
unique ID provided by SLP and manual
SLP attribute queries. If it does not,
DashBoard will close its connection to the
frame.

BACKWARDS_COMPATIBILE 0xFF05 String
(20-
bytes
max)

N/A Specifies the lowest software version to
maintain OID-compatibility with this
software version. If this OID is not
supplied, the lowest software version is
assumed to be the version specified in the
SOFTWARE_REV OID (0x010B).

The card guarantees that all software
versions bounded by the version numbers
specified between 0xFF05 and 0x010B
can be restored using the same stored set
of parameter values.

RESTORE_SET_DELAY 0xFF06 Int16 N/A Specifies the delay to use between each
parameter set request during a card
restore. The restore set messages will
not be sent any faster than the specified
delay. This number must be between 0
and 1000 milliseconds.

If this value is not specified, a default of 0
is used. Parameters will be restored as
quickly as the card can process the

DashBoard CustomPanel Development Guide Reserved Object IDs • 283

Name OID Type Constra
int

Function

PARAM_SET commands.

If the value is -1, DataSafe is disabled for
this card. Other negative values are not
valid at this time and should not be used.

RESTORE_START 0xFF07 Int16 N/A A parameter set request with a value of 1
will be sent to this parameter before the
card data is restored (the equivalent of a
button press in DashBoard).

If this parameter is provided, its position in
the list of OIDs returned by the
OGP_GET_PARAM_OIDS Response
defines where the range of saved
parameter values should start. No
parameters whose OID was returned
before this OID will be restored by
DataSafe.

RESTORE_STOP 0xFF08 Int16 N/A A parameter set request with a value of 1
will be sent to this parameter after the
card data is restore is complete (the
equivalent of a button press in
DashBoard).

If this parameter is provided, its position in
the list of OIDs returned by the
OGP_GET_PARAM_OIDS Response
defines where the range of saved
parameter values should stop. No
parameters whose OID was returned after
this OID will be restored by DataSafe.

DATASAFE_NAME 0xFF09 String N/A Alternative card name for determining
DataSafe compatibility.

UPLOAD_NAME 0xFF0A Int16 Choice Alternative card name for file upload
purposes.

DISPLAY_OPTIONS 0xFF0B Int16
ARRA
Y

 Each array element is used to define a
different display option.

Element 0 controls display of the card:
0 (Default) = Display the card in the tree
view
1 = Hide the card in the tree view

Element 1 controls the display of the slot
name before the card name:
0 (Default) = Display the slot name (e.g.
Slot 1: UDC-8225-W)
1 = Hide the slot name (e.g. UDC-8225-
W)

All other array elements are reserved for
future use.

DEVICE_ICON 0xFF0C Int16 N/A Contains an external object ID for an
encapsulated icon.

DEVICE_INDEX_URL 0xFF0D String N/A URL for a DashBoard Connect XML
Definition.

OGLML_DESCRIPTOR 0xFF0E String N/A Provides an OGLML URL that describes a

284 • Reserved Object IDs DashBoard CustomPanel Development Guide

Name OID Type Constra
int

Function

layout to use in place of the standard
configuration screen in DashBoard.

DEDICATED_CONNECTION 0xFF0F Binary N/A Allows a card that has its own Ethernet
port to communicate directly with
DashBoard, bypassing the CAN bus and
MFC card. This allows traffic offloading
from the CAN bus, and also allows
messages to be sent to specific
DashBoards rather than all of them.

When connected, DashBoard will use this
connection to send all messages to the
card. DashBoard will continue to receive
updates from both the dedicated OGP
connection and the CAN Bus connection.

UTF-8 String for the hostname
UINT16 for the port
UINT8 for the use
0 = Do not use
1 = Connect when UI is visible

DEVICE_IP_ADDRESS 0xFF10 Int32 IP_AD
DRESS

Cards that have their own Ethernet port
should use this OID to report their current
IPv4 address.

FAN_SPEED_REQUEST 0xFF11 Int16 N/A Used by cards in OG3-FR high power
frame to request additional fan cooling.
Card must send OGP_REPORT_PARAM
for this OID periodically (not to exceed
once per minute). Value of the parameter
varies depending on the cooling
capabilities of the frame.

OCCUPIED_SLOTS 0xFF12 Int16 N/A Report the number of slots this card
occupies.
Value consists of two 8-bit fields,
representing the number of additional
slots to the left and right.
Value = (left << 8) | (right)

UPLOAD_FILE_EXTENSIONS 0xFF13 String
Array

N/A Extensions of file types allowed to be sent
to the device. Arrau elements have the
format: “[Description]<ext:[extension
without dot]>”

RESERVED 0xFF14
to
0xFFFF

… … Reserved for future use

** Required by DashBoard and SNMP.

* Required for SNMP.

+ Version numbers are important for software uploads and DataSafe. Please review section 5-9 for
recommended version number encodings.

SMPTE_STATUS, CURRENT_MILLIS, and EDIT_PERMISSION are optional, but to avoid
misinterpretation, these OIDs should not be used for other parameters.

Reserved MFC and DashBoard Connect (slot 0) OIDs
Parameter OIDs in the range 0xFE00 to 0xFEFF have special significance for the MFC network

DashBoard CustomPanel Development Guide Reserved Object IDs • 285

controller (Slot 0) device. These also apply to any DashBoard Connect devices reporting on slot 0.

Name OID Type Constra
int

Function

DOOR_STATE 0x0709 Int16 N/A Broadcast by the MFC every 10 seconds to
indicate door status. 1= closed and 2= open
Deprecated field, see
FAN_DOOR_STATUS on page 286.

SLOT_NAMES 0x803 Int16_Array N/A This array has one element for each slot in
the frame. Each element’s value is the OID
of a String parameter whose value should be
used as the name for the device in the given
slot.

SLOT_DATA_SAFE 0x802 Int16_Array N/A This array has one element for each slot in
the frame.
0 = DataSafe is enabled for the slot [Element
#]
Default = DataSafe is disabled for slot
[Element #] by the frame

URM_STATE 0xFE01 Int16 N/A States whether the frame requires a User
Rights Management (URM) -Enabled
DashBoard (or a master password) is
required to connect to DashBoard.
0 (Default) = URM is not supported by the
frame
1 = URM is disabled/not required
2 = URM is enabled/required

MASTER_PASSWORD 0xFE02 String
(20-bytes
max)

N/A This is the value of the master password
required by DashBoard users to connect
when the User Rights Management server is
not available and the URM State is
“Enabled”

APPLY_BUTTON 0xFE03 Int16 Choice The button DashBoard must press to apply
changes to the master password or URM
state parameters.

CANCEL_BUTTON 0xFE04 Int16 Choice The button DashBoard can press to cancel
any changes to the master password or
URM state parameters. After the apply
button has been pressed, this button does
nothing.

DEVICE_CATEGORY 0xFE05 String N/A Default: “openGear Devices”
Controls how items are grouped in User
Rights Management and in the DashBoard
tree view.
Items sharing the same category are kept
together.

FRAME_ICON 0xFE06 Int16 N/A Contains an external object ID for an
encapsulated icon.

CONFIG_SLOT 0xFE07 Int16 N/A Default: 0
The slot # for the device to open when the
frame is ‘opened’ for configuration.

CONFIG_URL 0xFE08 String N/A Default: [none]
If defined and non-empty, the URL of a web
page to open when the frame is ‘opened’ for
configuration.

INDEX_URL 0xFE09 String N/A URL for a DashBoard Connect XML
Definition.

MASTER_PASSWORD
_SAVE

0xFE0A String N/A Same as 0xFE02 above, but used for
internal storage on the MFC controller.

286 • Reserved Object IDs DashBoard CustomPanel Development Guide

Name OID Type Constra
int

Function

FAN_DOOR_STATUS 0xFE0B Int16 N/A Broadcast by the MFC every 10 seconds to
indicate door status.
1= closed
2= open
This replaces legacy OID 0x0709.

FAN_AMBIENT_TEMP 0xFE0C Int16 N/A Broadcast by the MFC every 10 seconds to
report the ambient temperature of inlet air.
0 = fan door is open
Otherwise temperature in degrees Celsius.

FAN_SPEED_REPORT 0xFE0D Int16 N/A Broadcast by the MFC every 10 seconds to
report current door fan speed.
0 = minimum speed (or fan door open)
Higher values indicate increasing speed.
Max value depends on DFR frame type.

RESERVED 0xFE0E
–
0xFEFF

… … Reserved for future use

	Cover
	Thank You for Choosing Ross
	Guide Information
	Contents
	Introduction
	About this Guide
	CustomPanel Overview
	PanelBuilder
	CustomPanel Framework
	Data Sources
	Datastore
	Application
	Client Interface
	openGear Protocol
	Resource XML File
	openGear Layout Markup Language (OGLML)
	ogScript

	Getting Started
	Building a CustomPanel Application

	DashBoard Data Model
	In This Section
	Device Data Model
	Data Object Hierarchy
	Device / Card
	Parameters
	Object Identifiers (OIDs)
	Descriptors

	Constraints
	Unconstrained
	Range Constraints
	Choice Constraints
	Alarms
	External Constraints

	Parameter Structure Objects
	Parameter References
	Menus
	Default Menu Layout
	OGLML Menu Layout

	Customizing Menus Using Display Hints
	Universal Hints
	Separators, Titles and Layout Hints
	Array Layout Hints
	WIDGET_ARRAY_HEADER_VERTICAL (15)
	WIDGET_ARRAY_HEADER_HORIZONTAL (16)

	INT16/INT32 Parameters with Choice Constraints
	WIDGET_COMBO_BOX (7)
	WIDGET_CHECKBOX (8)
	WIDGET_RADIO_HORIZONTAL (9)
	WIDGET_RADIO_VERTICAL (10)
	WIDGET_BUTTON_NO_PROMPT (12)
	WIDGET_BUTTON_PROMPT (11)
	WIDGET_BUTTON_TOGGLE (13)
	WIDGET_FILE_DOWNLOAD (18)
	WIDGET_MENU_POPUP (20)
	WIDGET_RADIO_TOGGLE_BUTTONS (22)
	WIDGET_TREE (31)
	WIDGET_TREE_POPUP (32)

	Hints for Numeric Parameters with Other Constraints
	WIDGET_SLIDER_HORIZONTAL (3)
	WIDGET_SLIDER_VERTICAL (4)
	WIDGET_SLIDER_HORIZONTAL_NO_LABEL (24)
	WIDGET_SLIDER_VERTICAL_NO_LABEL (25)
	WIDGET_VERTICAL_FADER (26)
	WIDGET_TOUCH_WHEEL (27)
	WIDGET_PROGRESS_BAR (17)
	WIDGET_SPINNER (5)
	WIDGET_TEXTBOX (6)
	WIDGET_IP_ADDRESS (14)
	WIDGET_AUDIO_METER (19)
	WIDGET_TIMER (21)
	WIDGET_HEX_SPINNER (28)
	WIDGET_ABSOLUTE_POSITIONER (29)
	WIDGET_CROSSHAIR (30)
	WIDGET_JOY_STICK(34)
	WIDGET_COLOR_CHOOSER(23)
	WIDGET_COLOR_CHOOSER_POPUP(33)
	WIDGET_GRAPH (256)
	WIDGET_EQ_GRAPH (46)

	Hints for String Parameters
	WIDGET_TEXT_ENTRY (3)
	WIDGET_PASSWORD (4)
	WIDGET_COMBO_ENTRY (11)
	WIDGET_COLORED_DOT (12)
	WIDGET_RICH_LABEL (13)
	WIDGET_MULTILINE_TEXT_ENTRY (14)
	WIDGET_NAME_OVERRIDE_APPEND (0)
	WIDGET_NAME_OVERRIDE_REPLACE (1)

	Hints for STRUCT Types
	WIDGET_TABLE (36)

	Data Types
	Endianness
	Number Encoding
	String Encoding

	External Data Objects
	Constraint
	Data File
	Image
	OGLML Descriptor or Index XML
	File

	OGLML Documents
	Containers
	Contexts
	OGLML Document Structure
	OGLML URLs
	OGLML Descriptor Format

	Custom Widgets
	Creating Widgets
	Widget Descriptor Structure
	OGLML Block
	Config Block

	Widget Samples
	Numeric Keypad

	Descriptor Location
	Inline Widget Descriptors
	External Widget Descriptor Files
	Device-served Widget Descriptors

	Parameter Mapping
	Using DashBoard Prebuilt Custom Widgets
	To Add a Custom Widget in DashBoard
	ogScript Macro Group Widget
	To Configure the ogScript Macro Group Widget

	XPression Desktop Preview 1.0
	To Configure the XPression Desktop Preview in DashBoard

	XPression CountDown 1.0
	To Configure the XPression CountDown Widget

	Custom APIs Within CustomPanels
	Lexical Order and Loading Order
	Interaction with On Load Handlers
	Example to Demonstrate the Effects of Lexical Order and Loading Order
	Example – Part 1: Simple API Plus an onload Handler
	Example – Part 2: .grid File with <api/> Defined After <ogscript/> Element
	Example – Part 3: Putting an Object in the Global Namespace
	Example – Part 4: Adding an <api> Tag that Conflicts with a Previous <api> Tag
	Example – Part 5: API Definition with immediate="true"

	Loading order with Minimal Mode and Subscriptions Protocols

	Enabling Reuse by Keeping APIs in Separate Files
	Managing Scope
	The Module Pattern
	Transcendental Vectors Engine <api/>
	Pressurized Water Reactor <api/>

	OGLML Reference
	In This Section
	General Attributes
	Using OGP Devices that Support Subscriptions Protocol
	subscriptions
	Examples

	openGear Style Hints
	Style Hint Reference
	style Style Hint
	Component Color
	Predefined Colors
	Border Styles
	Text/Font Styles
	Icon Styles
	Tooltip Style
	Inset Style
	Background Styles
	Button Style Modifiers

	Layout/Container Tags
	abs
	borderlayout
	flow
	popup
	pager
	simplegrid
	split
	tab
	table

	Top Level Attributes
	editlock
	encrypt
	gridsize
	keepalive

	Widget Tags
	drawer
	wizard
	reveal
	ext
	exit
	help
	image
	label
	button
	browser
	blank
	lock
	memory
	widget
	webcam
	NDI

	Non-UI Tags
	api
	context (device context)
	subscription
	meta
	widgets
	widgetdescriptor
	lookup
	style
	color
	ogscript
	constraint
	Constraint Types
	constraint (Unconstrained)
	constraint (Constraint Reference)
	constraint (Range Constraints)
	constraint (Integer Choice Constraints)
	constraint (String Choice Constraints)
	constraint (Alarm Table)
	constraint (Struct Constraints)

	params
	timer
	listener
	task
	timertask
	include

	Device Resource Declarations
	Resource XML File
	commands
	command
	config
	constraint
	card
	frame
	menu
	menugroup
	statusmenu
	configmenu
	params
	param
	param (struct)

	Device Resource Tags
	menugroup
	menu
	param
	constraint
	buttonbar
	editor
	summary
	statuscombo

	Macro Expansion
	%frame%
	%device%
	%slot%
	%value%
	%widget%
	%const%
	%baseoid%
	%fully-qualified-id%
	%panel-path%
	%app-path%
	%id%
	%eval[ogscript]%

	ogScript Reference
	About ogScript
	JavaScript
	Commonly Used Functions
	Functions Set in the User Interface
	multiSetScriptable Object

	ogscript Object
	addOnClose
	addRemoteTrigger
	appendXML
	asyncExec
	asyncFTP
	asyncFTPGet
	asyncFTPListFiles
	asyncHTTP
	asyncPost
	cancelTimer
	closePanel
	colorToHSL
	copyByteArray
	copyText
	createAMPSender
	createAsyncExec
	createByteArray
	createFileInput
	createFileOutput
	createListener
	createMessageBuilder
	createMessageParser
	createVDCPSender
	debug
	fireGPI
	focus
	ftp
	ftpGet
	ftpListFiles
	getAllById
	getApplicationPath
	getAsyncExecById
	getAttribute
	getBrowserById
	getBuild
	getComponentsById
	getContextId
	getCurrentUser
	getFile
	getFileSize
	getImageById
	getIncludeById
	getListenerById
	getModificationDate
	getObject
	getPanelPath
	getPanelRelativeURL
	getPosition
	getPrivateString
	getScopedAttribute
	getSize
	getString
	getTimerManager
	hide
	hslToColorString
	http
	installTimer
	isClosed
	isTimerRunning
	jsonToString
	parseXML
	pasteText
	putObject
	putPrivateString
	putString
	reload
	rename
	reposition
	repositionByPercent
	reveal
	runXPath
	saveToFile
	sendUDPAsBytes
	sendUDPBytes
	sendUDPString
	setAnchorPoints
	setSize
	setStyle
	setXML
	toBottom
	toTop
	upload

	params Object
	params Functions
	createCopy
	createIntChoiceConstraint
	createLinkedCopy
	createMultiSet
	createParam
	createStringChoiceConstraint
	deleteParam
	getAllValues
	getConstraint
	getDeviceStatus
	getElementCount
	getIdentifiedConstraint
	getParam
	getParam(OID, Index).remove
	getStream
	getValue
	getValueAsString
	isDeviceOnline
	isDeviceReadOnly
	isPrivateParamContext
	replaceConstraint
	replaceViewConstraint
	resetAllValues
	setAccess
	setAllValues
	setMenuState
	setPrivateParamContext
	setStream
	setValue
	setValueRelative
	subscribe
	unsubscribe
	toOid

	ParamScriptable Object
	rosstalk Object
	rosstalkex Object
	robot Object
	vdcp Object
	nkScript Object
	webcam Object
	NDI Object
	RPM Object

	Appendices
	In This Section
	Appendix A: Widget Hint Definitions
	Appendix B: Reserved Object IDs
	Reserved OIDs
	Reserved MFC and DashBoard Connect (slot 0) OIDs

